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CONVERGENCE OF THE TFDW ENERGY TO THE LIQUID DROP
MODEL∗
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Abstract. We consider two nonlocal variational models arising in physical contexts. The first is
the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) model, introduced in the study of ionization of
atoms and molecules, and the second is the liquid drop model with external potential, proposed by
Gamow in the context of nuclear structure. It has been observed that the two models exhibit many
of the same properties, especially in regard to the existence and nonexistence of minimizers. We show
that, under a “sharp interface” scaling of the coefficients, the TFDW energy with constrained mass
Γ-converges to the liquid drop model for a general class of external potentials. Finally, we present
some consequences for global minimization of each model.
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1. Introduction. The Thomas–Fermi–Dirac–von Weizsäcker (TFDW) theory is
a variational model for ionization in atoms and molecules. Minimizers u ∈ H1(R3) of
the energy

ETFDW (u) =

∫
R3

(
cTF |u|

10
3 − cD|u|

8
3 + cW |∇u|2 − V |u|2

)
dx+D(|u|2, |u|2),(1.1)

where

D(f, g) :=
1

2

∫
R3

∫
R3

f(x)g(y)

|x− y|
dx dy,

subject to an L2 constraint, ‖u‖2L2(R3) = M , model electron density in an atom or
molecule whose nuclei act via the electrostatic potential V and total electron charge
M (see [23].) The liquid drop model (with potential) is also a variational problem
with physical motivations: For sets Ω ⊂ R3 of finite perimeter and given volume
|Ω| = M , one minimizes the energy

ELD(Ω) = PerR3(Ω)−
∫

Ω

V dx+D(1Ω,1Ω).

Here, the first term represents the perimeter of ∂Ω, which may be calculated as the
total variation of the measure |∇1Ω|, with 1Ω ∈ BV (R3; {0, 1}). When V ≡ 0, this is
Gamow’s problem, a simplified model for the stability of atomic nuclei (see [10]). The
constraint value M represents the number of nucleons bound by the strong nuclear
force.
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3494 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

As variational problems, the TFDW and liquid drop models have much in com-
mon. Each features a competition between local attractive terms (gradient and po-
tential terms) and a common nonlocal repulsive term. As such, each problem is
characterized by subtle problems of existence and nonexistence due to the translation
invariance of the problem “at infinity”: For large values of the “mass” constraint M ,
minimizing sequences may fail to converge due to splitting of mass which escapes to in-
finity, the “dichotomy” case in the concentration-compactness principle of Lions [25].
(See, e.g., [7, 11, 13, 14, 15, 19, 20, 26, 27, 28, 31].) While this similarity has been
often remarked and one often speaks of the liquid drop models as a sort of “sharp
interface” version of TFDW, no direct analytic connection between the two has been
made. In this paper, we prove that, after an appropriate “sharp interface” scaling and
normalization, the TDFW energy converges to the liquid drop model with potential,
within the context of Γ-convergence. We remark that in bounded domains Ω ⊂ R3,
it is the Ohta–Kawasaki functional, arising in di-block copolymer models and with
an L1(Ω) mass constraint, which Γ-converges to the nonlocal isoperimetric problem
(which is a bounded domain form of the liquid drop model); see [32, 33, 30, 10].

In order to establish this connection, we select the constants in the TFDW energy
so as to set up a sharp interface limit. We note that this choice of scaling is not phys-
ically natural for the application to ionization phenomena but is motivated purely
mathematically. We introduce a length-scale parameter ε > 0 and choose constants
cW = ε

2 , cTF = 1
2ε , and cD = 1

ε . We note that for fixed ε, the qualitative behavior
of the minimization problem for TFDW is not affected by the specific choices of the
constants cW , cTF , cD, and the values we select here match the standard choice of con-
stants in the liquid drop model. In addition, we complete the square in the nonlinear
potential by adding in a multiple of the constrained L2 norm, which is a constant in
the minimization problem and thus has no effect on the existence of minimizers or
the Euler–Lagrange equations. That is, the nonlinear potential is rewritten as∫

R3

1

2ε

(
|u| 103 − 2|u| 83

)
dx =

∫
R3

1

2ε
|u|2

(
|u| 23 − 1

)2

dx− M

2ε
,

where M = ‖u‖2L2(R3) according to the constraint. Thus, we recognize the triple-well
potential

W (u) := |u|2
(
|u| 23 − 1

)2

vanishing at |u| = 0, 1 and a version of the TFDW energy of the rescaled and normal-
ized form

E V
ε (u) :=

∫
R3

[
ε

2
|∇u|2 +

1

2ε
W (u)− V |u|2

]
dx+D(|u|2, |u|2), ‖u‖2L2(R3) = M.

(1.2)

As ε → 0+, we expect that sequences {uε}ε>0 of uniformly bounded energy should
converge almost everywhere to one of the wells of the potential W , that is, in the limit
u(x) ∈ {0,±1}. As E V

ε (|u|) = E V
ε (u), we expect minimizers of E V

ε to have fixed sign,
but families {uε}ε>0 with bounded energy might well take both positive and negative
values. Hence, we define the limiting liquid drop functional for u ∈ BV (R3; {0,±1})
as

E V
0 (u) :=

1

8

∫
R3

|∇u| −
∫
R3

V |u|2dx+D(|u|2, |u|2).(1.3)
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CONVERGENCE OF TFDW 3495

The first term is the total variation of the measure |∇u|, and for u = 1Ω, it measures
the perimeter of ∂Ω. If u takes both values ±1, then∫

R3

|∇u| =
∫
R3

|∇u+|+ |∇u−|,

which measures the perimeter of {x ∈ R3 | u(x) = 1} and that of {x ∈ R3 | u(x) =
−1}, whereas the other terms yield the same value for u and |u| = u2.

We make the following general hypotheses regarding the potential V:

V ∈ L 5
2 (R3) + L∞(R3) and V (x) −−−−→

|x|→∞
0.(1.4)

We define domains for the functionals which incorporate the mass constraint,

H M :=
{
u ∈ H1(R3) : ‖u‖2L2(R3) = M

}
,

X M :=
{
u ∈ BV (R3, {0,±1}) : ‖u‖2L2(R3) = M

}
,

and define the infimum values

eVε (M) := inf
{
E V
ε (u) : u ∈H M

}
, eV0 (M) := inf

{
E V

0 (u) : u ∈X M
}

for the constrained TFDW and liquid drop problems. In recognition of the subtlety
of the existence problem for minimizers of both models (see [11], [31], [2], [1], and
the excellent review article [10]), the target space and Γ-limit must incorporate the
concentration structure of minimizing sequences for the liquid drop model: While
minimizing sequences for either the TFDW or the liquid drop functional may not
converge, they do concentrate at one or more mass centers, and if there is splitting
of mass, the separate pieces diverge away via translation. We define the energy “at
infinity,” E 0

0 (u), taking potential V ≡ 0, with infimum value e0
0(M). From this, we

then define the appropriate Γ-limit as

FV
0 ({ui}∞i=0) :=

E V
0 (u0) +

∞∑
i=1

E 0
0 (ui), {ui}∞i=0 ∈H M

0 ,

∞, otherwise,

(1.5)

on the space of limiting configurations,

H M
0 :=

{
{ui}∞i=0 ⊂ BV (R3, {0,±1});

∞∑
i=0

∫
R3

|∇ui| <∞,
∞∑
i=0

‖ui‖2L2(R3) = M

}
.

We now state our convergence result, which is in the spirit of Γ-convergence
but with respect to a notion of convergence which is suggested by concentration-
compactness, given by (1.6)–(1.7).

Theorem 1.1. E V
ε Γ -converges to FV

0 in the sense that
(i) (compactness and lower-bound) for any sequence εk −−−−→

k→∞
0+, if {uεk}k∈N ⊂

H M and supk E V
εk

(uεk) <∞, then there exists a subsequence (still denoted εk),
a collection {ui}∞i=0 ∈H M

0 , and translations {xik}k∈N ⊂ R3 so that

uεk(·)−

(
u0 +

∞∑
i=1

ui(· − xik)

)
−−−−→
k→∞

0 in L2(R3),(1.6)
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3496 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

|xik| −−−−→
k→∞

0, |xik − x
j
k| −−−−→

k→∞
∞, i 6= j,(1.7)

FV
0 ({ui}∞i=0) ≤ lim inf

k→∞
E V
εk

(uεk);(1.8)

(ii) (upper bound) given {ui}∞i=0 ∈ H M
0 and any sequence εk −−−−→

k→∞
0+, there exist

functions {uεk}k∈N ⊂ H M
0 and translations {xik}k∈N ⊂ R3 such that (1.6) and

(1.7) hold and

FV
0 ({ui}∞i=0) ≥ lim sup

k→∞
E V
ε (uεk).

We note that u0 is the limit of uε in L2
loc(R3) and could well be zero. However, it

is natural to distinguish this component, as it is the only one which “feels” the effect
of V , and for minimizers when (V 6≡ 0), it will be nontrivial.

The compactness and lower semicontinuity (with respect to the notion of con-
vergence given by (1.6)–(1.7)) combine two different approaches in the calculus of
variations. Local convergence of the singular limits uses BV bounds in the flavor of
the Cahn–Hilliard problems, as studied in [29, 34]. On the other hand, the lack of
global compactness imposes a concentration-compactness structure [25, 26, 14, 2] in
order to recover all of the mass escaping to infinity. The proof of part (i) is done in
section 2.

For the recovery sequence and upper bound (ii), the presence of an infinite num-
ber of {ui}∞i=0 presents some obstacles not normally seen in Cahn–Hilliard–types of
problems, where the setting is usually a bounded domain or flat torus. Indeed, for (ii)
of Theorem 1.1 we must consider {ui}∞i=0 with infinitely many nontrivial components,
and then it is only possible at any fixed ε > 0 to construct a trial function approxi-
mating ui when the scale of its support is large compared to ε. This construction will
be done in section 3.

While Theorem 1.1 expresses convergence of a family of variational problems in
the spirit of de Giorgi’s Γ-convergence, it does not fit the standard form defined in
most texts on the subject (see, for example, [8]) since the topology of the convergence
is not determined by the choice of a common underlying space which contains the
domains of the functionals E V

ε and FV
0 . More general notions of Γ-convergence have

been introduced to allow for contexts in which there is no common ambient space;
see [17], for instance. This form of the Γ-limit, as a sum of disassociated variational
problems splitting on different scales, was already introduced in droplet breakup for
di-block copolymers; see [11, 4].

An important motivation behind de Giorgi’s introduction of Γ-convergence was
to understand the existence of and relations between minimizers of the functionals
involved. In the following paragraph, we discuss the implications of our theorem to
minimization problems in various settings, and the proofs of those results will be given
in section 4.

On minimizers. Here we discuss the implications of the Γ-convergence result
on minimizers of TFDW (1.1) and of the liquid drop problem. For minimizers, we
note that E V

ε (|u|) = E V
ε (u), E V

0 (|u|) = E V
0 (u), and so we restrict to the cone of

nonnegative functions H M
+ , X M

+ , H M
0,+ as the domain for each. Hence, the triple-

well nature of the potential W (u) is not felt at all for energy minimizers, although
it is an interesting question whether one can impose some constraint or min-max
procedure which produces critical points which exploit the third well in a nontrivial
way.
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CONVERGENCE OF TFDW 3497

In some sense, one tends to think of a Γ-limit as a framework in which minimizers
of the ε functionals should converge to minimizers of the limiting energy (see, e.g.,
[21]), but given the complexity of the question of the existence of minimizers for each
model, this is a subtle point. The notion of generalized minimizers, introduced for the
case V ≡ 0 in [20, Definition 4.3], provides a useful means of discussing the structure
of minimizing sequences which may lose compactness.

Definition 1.2. Let V satisfy (1.4) and M > 0. A generalized minimizer of
E V

0 (M) is a finite collection {u0, u1, . . . , uN}, ui ∈ BV (R3, {0, 1}), such that

1. ‖ui‖2L2(R3) := mi, i = 0, 1, . . . , N , with
∑N
i=0m

i = M ;

2. u0 attains the minimum eV0 (m0), and ui attains e0
0(mi), i = 1, . . . , N ;

3. eV0 (M) = eV0 (m0) +
∑N
i=1 e

0
0(mi).

In [2], it is shown that to any minimizing sequence for the liquid drop model with
(or without) potential V , one may associate a generalized minimizer as above. In
this way, up to translation ferrying the components ui to infinity, the collection of all
generalized minimizers of E V

0 with constrained mass M completely characterizes the
minimizing sequences of E V

0 .
We naturally associate to a generalized minimizer {u0, u1, . . . , uN} an element

{ui}∞i=0 of H M
0 by taking ui = 0 for all i ≥ N + 1, and then we have FV

0 ({ui}∞i=0) =
eV0 (M). When convenient, we abuse notation and denote FV

0 ({ui}Ni=0) the value of the
limiting energy for a generalized minimizer. We may thus address the convergence of
minimizers of E V

ε (should they exist) in terms of generalized minimizers of E V
0 , using

Theorem 1.1.

Theorem 1.3. Let M > 0, and assume that there exists εn −−−−→
n→∞

0+, for which

eVεn(M) is attained at un ∈ H M
+ for each n ∈ N. Then there exists a subsequence

(not relabeled) and a generalized minimizer {u0, . . . , uN} of E V
0 for which (1.6) and

(1.7) hold for i = 0, . . . , N and

FV
0 ({ui}Ni=0) = eV0 (M) = lim

n→∞
eVεn(M).

A slightly more general version of Theorem 1.3 will be proven in Lemma 4.5.
There is a special class of potentials V for which the existence problem inf E V

ε is
completely understood for each ε, namely, V of long range, which are potentials that
satisfy

(1.9) lim inf
t→∞

t

(
inf
|x|=t

V (x)

)
=∞.

For example, the homogeneous potentials V ν(x) = |x|−ν are of long range for 0 < ν <

1. For V ∈ L 3
2 (R3) + L∞(R3) satisfying (1.9), it is known that the global minimum

is attained for any M > 0 for both the TFDW and the liquid drop functionals [3,
Theorems 1 and 2]. For this class of problem, we then obtain the global convergence
of minimizers in the L2 norm.

Corollary 1.4. Assume V satisfies (1.4) and (1.9), and for M > 0 and, ε > 0,
let uε ∈ H M

+ be a minimizer of eVε (M). Then, for any sequence εn −−−−→
n→∞

0+,

there exists a subsequence (not relabeled) and a minimizer u0 ∈ X M
+ of eV0 (M) with

uεn −−−−→
n→∞

u0 in L2(R3).

The most important examples for TFDW are those with atomic or molecular
potentials V , as they are related to the ionization conjecture [26, 22, 15, 28, 31]. We
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3498 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

consider the atomic case

V (x) = VZ(x) =
Z

|x|
,

with Z ≥ 0 representing a constant nuclear charge. With slight abuse of notation, we
denote by E Z

ε , E Z
0 the energies (1.2) and (1.3), respectively, with the atomic choice

V = VZ = Z/|x| and

eZε (M) := inf
{
E Z
ε (u) : u ∈H M

+

}
, eZ0 (M) := inf

{
E0(u) : u ∈X M

+

}
.

For this choice of potential and in the liquid drop setting, Lu and Otto [28] proved

that there exists µ0 > 0 for which the ball BM = BrM (0), rM = 3

√
3M
4π , centered at

the origin of volume M , is the unique (up to translations for Z = 0), strict minimizer
of eZ0 (M) for all 0 < M < Z + µ0. The corresponding existence result for TFDW is
much weaker: By a result of LeBris [22], for each ε > 0 fixed, there exists µε > 0 for
which eZε (M) is attained for all 0 < M < Z + µε. A natural conjecture is that the
intervals of existence converge, that is, µε −−−−→

ε→0+
µ0. Using Theorem 1.1, we are able

to prove the following.

Theorem 1.5. Let V (x) = Z/|x|, Z > 0.
(a) For any M ∈ (0, Z+µε), eZε (M) is attained at uε ∈H M

+ for each ε > 0, and
uε −−−−→

ε→0+
1BM in the L2 norm.

(b) For every M ∈ (Z,Z + µ0) and sequence εn −−−−→
n→∞

0+, there exists a subse-

quence (not relabeled) and Mn ≤ M with Mn −−−−→
n→∞

M such that eZεn(Mn)

attains a minimizer un ∈H Mn
+ . Moreover, un −−−−→

n→∞
1BM in the L2 norm.

Theorem 1.5 is connected to the classical Kohn–Sternberg [21] result on the exis-
tence of local minimizers of the ε-problem in an L2-neighborhood of an isolated local
minimizer of the Γ-limit. We find minimizers for E Z

ε which converge to the ball of
mass M as ε → 0+ in L2(R3), which would have the given mass M except for the
possibility of vanishingly small pieces splitting off and diverging to infinity as ε→ 0+.
If it were possible to give a uniform (in ε > 0) lower bound on the quantity of diverg-
ing mass in the case of splitting, then we would be able to eliminate this possibility
completely and assert that Mε = M in (b), as conjectured above.

2. Compactness and lower bound. In this section, we prove part (i) of The-
orem 1.1. This involves combining lower bounds on singularly perturbed problems of
the Cahn–Hilliard type with concentration-compactness methods to deal with possible
loss of compactness via splitting.

In this section, we fix a potential V satisfying (1.4). Throughout the paper, we
shall denote by C a generic constant whose value may change from one line to another.
We begin with some preliminary estimates.

Lemma 2.1. Let {vε}ε>0 ⊂ H1(R3), with ‖vε‖2L2(R3) ≤ M and E V
ε (vε) ≤ K0,

where K0 > 0 is a constant independent of ε. Then there exists a constant C0 =
C0(K0,M, V ) such that, ∀0 < ε < 1

4 , we have∫
R3

[
ε

2
|∇vε|2 +

1

2ε
W (vε)

]
dx+D(|vε|2, |vε|2) ≤ C0.
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Proof. First by (1.4), we write V = V5/2 + V∞, where V5/2 ∈ L
5
2 (R3) and V∞ ∈

L∞(R3), and fix K > 0 large enough so that

|t| 103 ≤ 5

3
W (t), |t| > K.

Then, by Young’s inequality, for any u ∈ H1(R3),∫
R3

V |u|2dx ≤
∫
R3

V5/2|u|2dx+ ‖V∞‖L∞(R3)

∫
R3

|u|2dx

≤ 2

5

∫
R3

|V5/2|
5
2 dx+

3

5

∫
R3

|u| 103 dx+ ‖V∞‖L∞(R3)

∫
R3

|u|2dx

≤ C

(
1 +

∫
{|u|<K}

|u|2dx

)
+

∫
{|u|>K}

W (u)dx+ ‖V∞‖L∞(R3)

∫
R3

|u|2dx

≤ C2 + C1

∫
R3

|u|2dx+
1

2ε

∫
R3

W (u)dx.

Hence, there exist constants C1, C2 > 0, for which

2E V
ε (u) + C1

∫
R3

|u|2dx+ C2 ≥
∫
R3

[
ε

2
|∇u|2 +

1

2ε
W (u)

]
dx+D(|u|2, |u|2),

and the desired estimate follows.

Remark 2.2. Under the hypotheses of Lemma 2.1, {vε}ε>0 is bounded in L
10
3 (R3)

and ∫
R3

W (vε)dx −−−−→
ε→0+

0.

Lemma 2.3. Assume V satisfies (1.4) and {un}n∈N, {vn}n∈N are sequences which

are bounded in L2(R3)∩L 10
3 (R3) and such that (un − vn) −−−−→

n→∞
0 in L2

loc(R3). Then∫
R3

V
(
|un|2 − |vn|2

)
dx −−−−→

n→∞
0.

Proof. Let δ > 0 be given. By (1.4), we may decompose V = V1 +V2 +V3, where

V1(x) = V (x)[1−1BR(x)], V2(x) = [V (x)−t]+1BR(x), V3(x) = min{V (x), t}1BR(x),

with R large enough that ‖V1‖L∞(R3) < δ and t large enough that ‖V2‖
L

5
2 (R3)

< δ.

Note that V3 is compactly supported and uniformly bounded. We then consider each
part separately:∫

R3

V1

∣∣|un|2 − |vn|2∣∣dx ≤ δ(‖un‖2L2(R3) + ‖vn‖2L2(R3)) ≤ cδ,∫
R3

V2

∣∣|un|2 − |vn|2∣∣dx ≤ ‖V2‖
L

5
2 (R3)

(‖un‖
L

10
3 (R3)

+ ‖vn‖
L

10
3 (R3)

) ≤ cδ,∫
R3

V3

∣∣|un|2 − |vn|2∣∣dx ≤ ‖V3‖L∞(R3)

∫
BR

∣∣|un|2 − |vn|2∣∣dx −−−−→
n→∞

0.

As δ > 0 is arbitrary, the result follows.
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3500 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

Remark 2.4. The hypothesis (1.4) is slightly stronger than is typical for problems

of the TFDW type, in which a weaker local integrability is assumed, V ∈ L 3
2 (R3) +

L∞(R3). (See, e.g., [6, 31].) Having V ∈ L
3
2

loc(R3) is a natural condition for using
the squared gradient to control V |u|2 via the Sobolev embedding. However, given the
singularly perturbed nature of E V

ε , control on the Dirichlet energy is lost as ε→ 0+,

and we must rely on the L
10
3 norm instead, hence the need for the more stringent

L
5
2 (R3) + L∞(R3) demanded in (1.4).

Next, we prepare the way for the proof of the compactness part of Theorem 1.1
by establishing that sequences {uε}ε>0 with bounded energy must have centers of
concentration, even if they are divergent. The following lemma will be used to rule
out dissipation of {uε}ε>0 as long as the BV norm is bounded and the L

4
3 norm of

uε is not vanishing.

Lemma 2.5. There exists a universal constant C > 0 such that, for all ψ ∈
BV (R3),

(2.1) ‖ψ‖BV (R3)

[
sup
a∈R3

∫
B1(a)

|ψ|dx

] 1
3

≥ C
∫
R3

|ψ| 43 dx.

Proof. It suffices to prove that (2.1) holds for ψ ∈W 1,1(R3), as we can extend it
to ψ ∈ BV (R3) by using a density argument [5, Theorem 3.9].

Let ψ ∈ W 1,1(R3), and define χa := χ(x − a), where χ ∈ C∞0 (R3) \ {0} is any
nonnegative function that is compactly supported in B1(0).

Then, by Hölder’s inequality and Sobolev’s inequality,∫
B1(a)

|χaψ|
4
3 dx =

∫
B1(a)

|χaψ|
1
3 |χaψ|dx

≤

[∫
B1(a)

|χaψ|dx

] 1
3 (∫

R3

|χaψ|
3
2 dx

) 2
3

≤ C

[
sup
a∈R3

∫
B1(a)

|ψ|dx

] 1
3 ∫

R3

|∇(χaψ)|dx

≤ C

[
sup
a∈R3

∫
B1(a)

|ψ|dx

] 1
3 ∫

R3

(χa|∇ψ|+ |∇χa||ψ|) dx.

We conclude the proof of this lemma by integrating with respect to a ∈ R3.

From this lemma, we may then conclude that noncompactness of sequences with
the bounded BV (R3) norm is due to splitting and translation. The following is an
adaptation of [14, Proposition 2.1], which is proven for characteristic functions of
finite perimeter sets.

Proposition 2.6. Assume {ψn}n∈N is a bounded sequence in BV (R3), for which
lim infn→∞ ‖ψn‖

L
4
3 (R3)

> 0. Then there exists translations {an}n∈N ⊂ R3 and ψ0 ∈
BV (R3), ψ0 6≡ 0, such that, for some subsequence (not relabeled), we have

(a) ψn(· − an) −−−−→
n→∞

ψ0 in L1
loc(R3);

(b) ‖ψ0‖BV (R3) ≤ lim infn→∞ ‖ψn‖BV (R3).
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Proof. By Lemma 2.5, we have

sup
a∈R3

∫
B1(a)

|ψn|dx ≥

[
C

∫
R3 |ψ|

4
3 dx

‖ψn‖BV (R3)

]3

≥ 2c

for some c > 0 independent of n. Hence, for each n ∈ N, we may choose an ∈ R3, for
which

(2.2)

∫
B1(an)

|ψn|dx ≥ c > 0.

As {ψn(· − an)}n∈N is bounded in BV (R3), there exists a subsequence and ψ0 ∈
BV (R3) for which (a) and (b) hold. By (2.2) and L1

loc convergence, the limit ψ0 6≡
0.

Once we have localized a piece of our BV (R3)-bounded sequence {ψn}n∈N as an
L1
loc-converging part, we will need to separate the compact piece from the rest, which

converges locally to zero but may carry nontrivial L1-mass to infinity. To do this, we
first define a smooth cutoff function ω : R→ [0, 1], with

ω(x) = 1 for x < 0, ω(x) = 0 for x > 1, ‖ω′‖L∞(R3) ≤ 2,

and, for any ρ > 0,

(2.3) ωρ(x) = ω(|x| − ρ).

The next proposition is based on [14, Lemma 2.2].

Proposition 2.7. Let {ψn}n∈N be bounded in BV (R3) with ψn −−−−→
n→∞

ψ0 in

L1
loc(R3) and pointwise almost everywhere in R3 for some function ψ0 ∈ BV (R3).

If 0 < ‖ψ0‖L1(R3) < lim infn→∞ ‖ψn‖L1(R3), then there exist radii {ρn}n∈N ⊂ (0,∞)
such that, up to a subsequence,∫

R3

[|∇ψn| − |∇(ψnωρn)| − |∇(ψn − ψnωρn)|] −−−−→
n→∞

0.(2.4)

Moreover,

ψnωρn −−−−→
n→∞

ψ0 in L1(R3) and ψn(1− ωρn) −−−−→
n→∞

0 in L1
loc(R3),(2.5)

with each converging pointwise almost everywhere in R3.

Proof. Note that∫
R3

|∇ψn| ≤
∫
R3

|∇(ψnωρn)|+
∫
R3

|∇ [ψn(1− ωρn)] |

≤
∫
R3

|∇ψn|+ 2

∫
R3

|ψn∇ω (|x| − ρn)| dx

≤
∫
R3

|∇ψn|+ 4

∫
Bρn+1(0)\Bρn (0)

|ψn|dx.

Therefore, (2.4) will hold if we find {ρn}n∈N ⊂ (0,∞) such that∫
Bρn+1(0)\Bρn (0)

|ψn|dx −−−−→
n→∞

0.(2.6)

We distinguish between two cases. First, suppose that suppψ0 ⊂ BR(0) for some
R > 0. In this case, we claim that it suffices to choose ρn = R for all n ∈ N. Indeed,
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3502 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

by L1
loc(R3) convergence and the compact support of ψ0,

||ψnωρn ||L1(R3) = ||ψnωρn ||L1(BR+1(0)) −−−−→n→∞
‖ψ0‖L1(R3).

Therefore, each sequence converges pointwise almost everywhere, and (2.5) holds by
the Brezis–Lieb lemma [9]. Also, since ψ0

1BR+1(0)\BR(0) ≡ 0 and ψn −−−−→
n→∞

ψ0 in

L1(BR+1(0)), we conclude that (2.6) is also verified in case supp (ψ0) is compact.
In the second case, if suppψ0 is essentially unbounded, note that ‖ψ0‖L1(R3) <

lim infn→∞ ‖ψn‖L1(R3) implies that along some subsequence (not relabeled), we may
choose Rn such that

(2.7)

∫
BRn (0)

|ψn|dx = ‖ψ0‖L1(R3).

We claim that, chosen this way, Rn −−−−→
n→∞

∞. Indeed, if (along a further subse-

quence if necessary) we had Rn ≤ R0 for some R0 > 0, it would follow from the L1
loc

convergence that

‖ψ0‖L1(R3) = lim inf
n→∞

‖ψn1BRn ‖L1(R3) ≤ lim inf
n→∞

‖ψn1BR0
‖L1(R3)

= ‖ψ0
1BR0

‖L1(R3) < ‖ψ0‖L1(R3)

since we are assuming that suppψ0 is essentially unbounded. Thus, Rn −−−−→
n→∞

∞.

Next, fix R > 1 such that∫
BR(0)

|ψ0|dx ≥ 1

2
‖ψ0‖L1(R3).

By L1
loc(R3) convergence, for all sufficiently large n, we have

(2.8)

∫
BR(0)

|ψn|dx ≥
1

4
‖ψ0‖L1(R3).

We now claim that for n large enough such that Rn > R, there exists ρn ∈[
R+Rn

2 , Rn
]
, for which

(2.9)

∫
Bρn+1(0)\Bρn (0)

|ψn|dx ≤
3

Rn −R
‖ψ0‖L1(R3).

If so, then (2.6) is satisfied with this choice of ρn ≥ rn := R+Rn
2 −−−−→

n→∞
∞. To verify

the claim, suppose the contrary, and so, for every ρ ∈ [rn, Rn], we have the opposite
inequality to (2.9). For fixed n, choose K ∈ N with Rn − 1 ≤ rn +K < Rn, so there
are K intervals of unit length lying in [rn, Rn]. Then, by (2.7), (2.8),

3

4
‖ψ0‖L1(R3) ≥

∫
BRn (0)

|ψn|dx−
∫
BR(0)

|ψn|dx ≥
∫
Brn+K(0)\Brn (0)

|ψn|dx

> K
3

Rn −R
‖ψ0‖L1(R3) ≥ 3

Rn − rn − 1

Rn −R
‖ψ0‖L1(R3)

=
3

2

Rn −R− 2

Rn −R
‖ψ0‖L1(R3),

for all sufficiently large n, a contradiction. This completes the proof of (2.4).
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CONVERGENCE OF TFDW 3503

To complete the proof of Proposition 2.7, first note that (up to a subsequence),
ψnωρn −−−−→

n→∞
ψ0 almost everywhere in R3, and recall that ρn ≤ Rn. Hence, from

(2.6), (2.7), we obtain

‖ψ0‖L1(R3) ≤ lim inf
n→∞

∫
R3

|ψnωρn |dx

= lim inf
n→∞

[∫
Bρn (0)

|ψn|dx+

∫
Bρn+1(0)\Bρn (0)

|ψn|dx

]

= lim inf
n→∞

∫
Bρn (0)

|ψn|dx ≤ lim inf
n→∞

∫
BRn (0)

|ψn|dx = ‖ψ0‖L1(R3).

Thus, each inequality above is an equality, ‖ψnωρn‖L1(R3) −−−−→
n→∞

‖ψ0‖L1(R3), and

hence (2.5) follows from the Brezis–Lieb lemma [9].

Remark 2.8. By lower semicontinuity of the total variation with respect to L1

convergence, up to a subsequence,∫
R3

|∇ψ0| ≤ lim
n→∞

∫
R3

(|∇ψn| − |∇(ψn − ψnωρn)|) .

We are now ready to prove the compactness and Γ-liminf part of the theorem.

Proof of Theorem 1.1(i). Let {uε}ε>0 be a family in H M with E V
ε (uε) ≤ K0,

ε > 0.
Step 1: Truncation.
First, we show that, when proving (i), it suffices to restrict to uε satisfying the

pointwise bounds −1 ≤ uε ≤ 1 almost everywhere in R3. Indeed, we define the
truncations

u∗ε :=


−1, uε < −1,

uε, |uε| ≤ 1,

1, uε > 1.

We will show that ‖uε − u∗ε‖2L2(R3) −−−−→
ε→0+

0 and

lim inf
ε→0+

E V
ε (u∗ε) ≤ lim inf

ε→0+
E V
ε (uε).(2.10)

To accomplish this, we first note that by Remark 2.2, we have that

0 ≤
∫
R3

|uε − u∗ε|2dx =

∫
{|uε|>1}

(|uε| − 1)
2
dx ≤ C

∫
R3

W (uε)dx −−−−→
ε→0+

0,

where C is a constant independent of ε. Also, by Remark 2.2, {uε}ε>0 is bounded

in L2(R3) ∩ L 10
3 (R3), and hence the sequence of truncations {u∗ε}ε>0 is as well. By

Lemma 2.3, we conclude that the local potential terms are close:∫
R3

V
(
|uε|2 − |u∗ε|2

)
dx −−−−→

ε→0+
0.

Finally, each of the other terms decreases under truncation,

|∇u∗ε| ≤ |∇uε|, W (u∗ε) ≤W (uε), D(|u∗ε|2, |u∗ε|2) ≤ D(|uε|2, |uε|2),

and so (2.10) is verified.

D
ow

nl
oa

de
d 

07
/0

4/
23

 to
 6

9.
12

.2
3.

37
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3504 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

In the following, we will therefore assume without loss of generality that −1 ≤
uε ≤ 1, ε > 0, almost everywhere in R3.

Step 2: Passing to the first limit.
Let φε := Φ(uε), where Φ : R→ R is defined by

Φ(t) :=

∫ t

0

√
W (τ)dτ.

Then

φε =

∫ uε

0

|t|(1− |t| 23 )dt = sign(uε)

(
1

2
|uε|2 −

3

8
|uε|

8
3

)
,

and since ‖uε‖∞L (R3) ≤ 1,

1

8
|uε|2 ≤ |φε| ≤

1

2
|uε|2 and |φε| ≤ φε(1) =

1

8
.(2.11)

In particular, ‖φε‖L1(R3) ≤ 1
2‖uε‖

2
L2(R3) ≤

M
2 . Furthermore, {φε}0<ε< 1

4
is bounded in

BV (R3). Indeed, following [29], by Young’s inequality and Lemma 2.1 with vε = uε,

(2.12)

∫
R3

|∇φε|dx =

∫
R3

√
W (uε)|∇uε|dx ≤

∫
R3

[
ε

2
|∇uε|2 +

1

2ε
W (uε)

]
dx ≤ K1,

with constant K1 = K1(K0,M, V ). Consequently, {‖φε‖BV (R3)}0<ε< 1
4

is bounded.

Now let εk −−−−→
k→∞

0+ be any sequence. By the compact embedding of BV (R3)

in L1
loc(R3), there exist a subsequence, which we continue to denote by εk −−−−→

k→∞
0+,

and a function φ0 ∈ BV (R3) so that φεk −−−−→
k→∞

φ0 in L1
loc(R3) and almost everywhere

in R3. Moreover, by lower semicontinuity of the total variation,∫
R3

|∇φ0| ≤ lim inf
k→∞

∫
R3

|∇φεk |dx.(2.13)

Now we can use the invertibility of Φ and the local uniform continuity of Φ−1 to
obtain that uεk −−−−→

k→∞
u0 := Φ−1(φ0) almost everywhere in R3. Then, by Fatou’s

lemma and Remark 2.2, we have

0 ≤
∫
R3

W (u0)dx ≤ lim inf
k→∞

∫
R3

W (uεk)dx = 0;

hence, W (u0) ≡ 0, u0(x) ∈ {0,±1} almost everywhere, and

φ0 =
1

8
u0 almost everywhere in R3.(2.14)

As a result, by Fatou’s lemma and (2.11), for any compact K ⊂ R3,

∫
K

|φ0|dx =
1

8

∫
K

|u0|2dx ≤ 1

8
lim inf
k→∞

∫
K

|uεk |2dx ≤ lim
k→∞

∫
K

|φεk |dx =

∫
K

|φ0|dx.

(2.15)D
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CONVERGENCE OF TFDW 3505

Thus, (taking a further subsequence if necessary), uεk −−−−→
k→∞

u0 pointwise almost

everywhere in R3. By the Brezis–Lieb lemma [9], we obtain convergence in L2
loc(R3),

with ‖u0‖2L2(R3) ≤M . Furthermore, by Fatou’s lemma,

(2.16) D(|u0|2, |u0|2) ≤ lim inf
k→∞

D(|uεk |2, |uεk |2),

and by Lemma 2.3 (with un = uεk and vn = u0), (2.13), (2.12), and (2.14), we have

E V
0 (u0) ≤ lim inf

k→∞
E V
εk

(uεk).

If φεk −−−−→
k→∞

φ0 in the L1 norm, then, by the same argument as (2.15), we may

conclude that uεk −−−−→
k→∞

u0 converges in L2 norm, and so m0 := ‖u0‖2L2(R3) = M ,

and, setting ui ≡ 0 for all i ≥ 1, the proof is complete.
Step 3: Splitting off the remainder sequence. If m0 = M , then uεk −−−−→

k→∞
u0

in L2(R3) by the Brezis–Lieb lemma [9], and, setting ui ≡ 0 for all i ≥ 1, the proof
is complete. To continue, we assume that m0 := ‖u0‖2L2(R3) < M , so the first limit
does not capture all of the mass in the sequence uεk . In this case, both uεk and φεk
converge only locally (and not in norm), that is,

‖φ0‖L1(R3) < lim inf
k→∞

‖φεk‖L1(R3),

and similarly for uεk by the Brezis–Lieb lemma [9].
Applying Proposition 2.7 and Remark 2.8 to φεk and the fact that we do not have

global convergence, there exists a sequence of radii {ρk}k∈N ⊂ (0,∞) with ρk −−−−→
k→∞

∞
so that, for

φ0
εk

:= ωρkφεk , φ1
εk

:= (1− ωρk)φεk ,

where ωρ is defined in (2.3), and for a subsequence (which we continue to write as
εk −−−−→

k→∞
0+),

φ0
εk
−−−−→
k→∞

φ0 in L1(R3), φ1
εk
−−−−→
k→∞

0 in L1
loc(R3),(2.17)

φ0
εk
−−−−→
k→∞

φ0, and φ1
εk
−−−−→
k→∞

0 pointwise almost everywhere in R3 and∫
R3

|∇φ0|+
∫
R3

∣∣∇φ1
εk

∣∣ dx ≤ ∫
R3

|∇φεk | dx+ o(1).(2.18)

Moreover, from (2.6) and (2.11), the mass contained in the cutoff region is negligible:

(2.19) lim
k→∞

∫
Bρk+1(0)\Bρk (0)

|φεk |dx = 0 = lim
k→∞

∫
Bρk+1(0)\Bρk (0)

|uεk |2dx.

We also decompose uεk into two pieces,

(2.20) u0
εk

= uεk
√
ωρk and u1

εk
= uεk

√
1− ωρk ,

so that (uεk)2 = (u0
εk

)2 + (u1
εk

)2 and, by the proof of Proposition 2.7, u1
εk
−−−−→
k→∞

0

almost everywhere in R3. Note that φiεk = Φ(uiεk) holds in R3\{ρk < |x| < ρk+1} and,
by (2.19), the region where they are no longer explicitly related carries a negligible
amount of the mass of uεk .
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3506 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

Equations (2.18), (2.14), and (2.12) give

1

8

∫
R3

|∇u0|+ lim
k→∞

∫
R3

|∇φ1
εk
|dx ≤ lim inf

k→∞

∫
R3

[
ε

2
|∇uε|2 +

1

2ε
W (uε)

]
dx ≤ K0,

(2.21)

and, in particular, {φ1
εk
}k∈N is bounded in BV (R3). The nonlocal term also splits in

the same way. Indeed, by (2.20), u0
εk
−−−−→
k→∞

u0 pointwise almost everywhere in R3,

the positivity of D(f, g) for f, g ≥ 0, and (2.16)

lim inf
k→∞

D(|uεk |2, |uεk |2) = lim inf
k→∞

D(|u0
εk
|2 + |u1

εk
|2, |u0

εk
|2 + |u1

εk
|2)

≥ lim inf
k→∞

D(|u0
εk
|2, |u0

εk
|2) +D(|u1

εk
|2, |u1

εk
|2)

≥ D(|u0|2, |u0|2) + lim inf
k→∞

D(|u1
εk
|2, |u1

εk
|2).

(2.22)

Moreover, (2.14), Fatou’s lemma, (2.11), and (2.17) give∫
R3

|φ0|dx =
1

8

∫
R3

|u0|2dx ≤ 1

8
lim inf
k→∞

∫
R3

|u0
εk
|2dx

≤ lim
k→∞

∫
R3

|φ0
εk
|dx =

∫
R3

|φ0|dx;

thus (taking a further subsequence if necessary), u0
εk
−−−−→
k→∞

u0 in L2(R3). As a result,

M = m0 + lim
k→∞

M1
εk
, where M1

εk
:= ‖u1

εk
‖2L2(R3) = ‖uεk − u0‖2L2(R3) + o(1).

(2.23)

Finally, as uεk −−−−→
k→∞

u0 in L2
loc(R3), by Lemma 2.3, we have∫

R3

V |uεk |2dx =

∫
R3

V |u0|2dx+ o(1),

and hence, by (2.14) and (2.21), we conclude

E V
0 (u0) + lim inf

k→∞

[∫
R3

|∇φ1
εk
|dx+D

(
|u1
εk
|2, |u1

εk
|2
)]
≤ lim inf

ε→0+
E V
ε (uε).

Step 4: Concentration in the remainder sequence.
For any bounded sequence {ψk}k∈N in L1(R3), we define

M ({ψk}) := sup{‖ψ‖L1(R3) : ∃xk ∈ R3, ψk(·+ xk) −−−−→
k→∞

ψ in L1
loc(R3)}.

So M ({ψk}) identifies the largest possible L1
loc limiting mass of the sequence, up to

translation.
We claim that for our remainder sequence, M ({φ1

εk
}) > 0. Indeed, this will follow

from Proposition 2.6 once we have established the hypotheses. We first note that, by
(2.21), {φ1

εk
}k∈N is bounded in BV (R3). Next, we must show that the L

4
3 norm of φ1

εk
is bounded below. As u1

εk
= uεk almost everywhere in R3\Bρk+1(0), from Lemma 2.1,

we have

4C0εk ≥
∫
R3\Bρk+1(0)

W (uεk)dx =

∫
R3\Bρk+1(0)

W (u1
εk

)dx,
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CONVERGENCE OF TFDW 3507

and thus, from (2.11), (2.6), (2.23), and t
8
3 = (t

10
3 + t2)/2−W (t)/2, we have∫

R3\Bρk+1(0)

|φ1
εk
| 43 dx

≥ 1

16

∫
R3\Bρk+1(0)

|u1
εk
| 83 dx

≥ 1

32

∫
R3\Bρk+1(0)

(
|uεk |

10
3 + |uεk |2

)
dx− 2C0εk

>
1

32

∫
R3\Bρk (0)

|uεk |2dx− o(1)

≥ 1

32

∫
R3

|u1
εk
|2dx+ o(1) =

M1
εk

32
+ o(1) =

1

32
(M −m0) + o(1) > 0.

(2.24)

Applying Proposition 2.6, the claim follows.
By the claim and Proposition 2.6, we may choose a subsequence, translations

{x1
k}k∈N, and φ1 ∈ BV (R3) with

φ1
εk

(· − x1
k) −−−−→

k→∞
φ1 in L1

loc(R3) and ‖φ1‖L1(R3) ≥
1

2
M ({φ1

εk
}).

Note that since φ1
εk
−−−−→
k→∞

0 in L1
loc(R3), the sequence |x1

k| −−−−→
k→∞

∞. By the same

arguments as in Step 1, we may conclude that u1
εk

(·−x1
k) −−−−→

k→∞
u1 = 8φ1 in L2

loc(R3)

and almost everywhere in R3, with W (u1) ≡ 0 almost everywhere in R3, and hence
u1 ∈ BV (R3, {0,±1}) with ‖u1‖2L2(R3) =: m1 ≤ (M −m0).

Finally, the nonlocal term, which splits as in (2.22), passes to the limit using
Fatou’s lemma:

D(|u0|2, (|u0|2) +D(|u1|2, |u1|2) ≤ D(|u0|2, |u0|2) + lim inf
k→∞

D
(
|u1
εk
|2, |u1

εk
|2
)

≤ lim inf
k→∞

D(|uεk |2, |uεk |2).

In conclusion, using the previous inequality and (2.21), we have

E V
0 (u0) + E 0

0 (u1) ≤ E V
0 (u0) + lim inf

k→∞

[∫
R3

|∇φ1
εk
|dx+D

(
|u1
εk
|2, |u1

εk
|2
)]

≤ lim inf
ε→0+

E V
ε (uε),

with m0 +m1 ≤M . If m1 = ‖u1‖2L2(R3) = M −m0, then u1
εk

(· − x1
k) −−−−→

k→∞
u1 in the

L2 norm by the Brezis–Lieb lemma [9], and the proof terminates, with ui ≡ 0 for all
i ≥ 2.

Step 5: Iterating the argument.
If m0 + m1 < M , then, as in Step 3, the convergence of φ1

εk
(· − x1

k) −−−−→
k→∞

φ1 is

only local and not in the norm of L1(R3) (and similarly for u1
εk

(· − x1
k) −−−−→

k→∞
u1 in

L2
loc), and so there is again a remainder part to be separated via Proposition 2.7. That

is, we may choose radii {ρ1
k}k∈N going to infinity and further decompose φ1

εk
(· − x1

k),

φ1
εk

(·−x1
k)ωρ1k −−−−→k→∞

φ1 in the L1 norm, φ2
εk

:= φ1
εk

(·−x1
k)(1−ωρ1k)−−−−→

k→∞
0 in L1

loc(R3),
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3508 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

with the same consequences as in Step 4: We first identify a mass center x2
k for φ2

εk
via Proposition 2.6. Since both φ1

εk
, φ2
εk
−−−−→
k→∞

0 in L1
loc(R3), we must have both

|x2
k|, |x2

k−x1
k| −−−−→

k→∞
∞. Translating and passing to a local L1 limit to find φ2 = 1

8u
2,

we obtain a refined lower bound in terms of u0, u1, u2. Iterating this procedure, after
n steps, we have u0, . . . , un ∈ BV (R3, {0,±1}) with masses ‖ui‖2L2(R3) = mi and

translations {xik}k∈N for each i = 1, . . . , n such that
(2.25)

uεk = u0 +

n∑
i=1

ui(· − xik) + un+1
εk

(· − xnk ), and un+1
εk

(· − xnk ) −−−−→
k→∞

0 in L2
loc(R3),

mi = ‖ui‖2L2(R3), i = 0, . . . , n,

|xik| −−−−→
k→∞

∞, |xik − x
j
k| −−−−→

k→∞
∞, 1 ≤ i 6= j,

M =

n∑
i=0

mi + lim
k→∞

‖un+1
εk
‖2L2(R3),

E V
0 (u0) +

n∑
i=1

E 0
0 (ui) ≤ lim inf

ε→0+
E V

0 (uε).


If, for some n ∈ N, the remainder φiεk → 0 in the L1 norm, then the iteration

terminates at that n, and the proof (i) of Theorem 1.1 is completed by choosing
ui = 0 for all i ≥ n + 1. If the iteration continues indefinitely, we must verify
that the entire mass corresponding to {uεk}k∈N is exhausted by the {ui}∞i=0. It is
here that we use M ({φiεk}). When localizing mass in the remainder term φiεk , the
translations {xik} and limit φi = 1

8u
i are chosen via Proposition 2.6 in such a way

that ‖φi‖L1(R3) ≥ 1
2M ({φiεk}), i = 1, . . . , n. In this way, the boundedness of the

partial sums
∑n
i=0m

i ≤M implies that, should the process continue indefinitely, the
residual mass M ({φiεk}) ≤ 2mi −−−→

i→∞
0. We claim that this implies that

(2.26) M =

∞∑
i=0

mi =

∞∑
i=0

‖ui‖2L2(R3)

and that the entire mass corresponding to {uεk}k∈N is exhausted by the {ui}∞i=0.
Indeed, if

∑∞
i=0m

i = M ′ < M , then each remainder sequence has ‖φiεk‖L1(R3) ≥
M−M ′

8 . Returning to Step 4 and calculating as in (2.24), we obtain a lower bound up
to a subsequence ∫

R3

|φiεk |
4
3 dx ≥ C(M −M ′)

for a constant C independent of k, i. Using Lemma 2.5, we then have a uniform lower
bound,

M ({φiεk}) ≥ sup
a∈R3

∫
B1(a)

|φiεk |dx ≥ C
′(M −M ′)3

for each i ∈ N, with C ′ depending on the upper energy bound K0 but independent
of k, i. This contradicts M ({φiεk}) < 2mi −−−→

i→∞
0. Hence, (2.26) is established, and,

passing to the limit n→∞ in (2.25), we conclude the proof of (i) of Theorem 1.1.
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3. Upper bound. In this section, we prove part (ii) of Theorem 1.1, the con-
struction of recovery sequences in the Γ-convergence of E V

ε . As the space H M
0 con-

sists of a collection of functions in BV (R3, {0,±1}), we build the recovery sequence
by superposition of each, using the following lemma.

Lemma 3.1. Given v0 ∈ BV (R3, {0,±1}) with ‖v0‖2L2(R3) = M , there exists ε0 =

ε0(v0) > 0 and functions {vε}0<ε<ε0 ⊂H M of compact support such that

‖vε − v0‖Lr(R3) −−−−→
ε→0+

0, ∀1 ≤ r <∞, and E V
ε (vε) −−−−→

ε→0+
E V

0 (v0).

Proof. The basic construction is familiar, based on that of Sternberg [34, Proof
of inequalities (1.12) and (1.13)], so we highlight the modifications necessary for our
case. The first step is to regularize v0. As compactly supported functions are dense
in the BV (R3) norm, we may assume that supp v0 is bounded. Next, define a smooth
mollifier, using ϕ ∈ C∞0 (B1(0)), ϕ(x) ≥ 0,

∫
B1(0)

ϕdx = 1 to generate ϕn(x) =

n3ϕ(nx) ∈ C∞0 (B 1
n

(0)). Following the proof of regularization of BV functions (see [5,

Theorem 3.42]), we create a sequence wn = ϕn∗v0, which is smooth and supported in a
1
n -neighborhood of the support of v0. As in [5], the regularization is obtained as a level
surface of wn. Here, we have two components, corresponding to the regularizations of
v0

+ and v0
−, in case v0 takes on both values ±1. By Sard’s theorem [12, 3.4.3], there

exist values t+ ∈ (0, 1) and t− ∈ (−1, 0), for which the boundaries of the sets

F+
n := {x ∈ R3 |wn(x) > t+ > 0}, F−n := {x ∈ R3 |wn(x) < t− < 0}

are smooth for each n ∈ N, v±n := 1F±n
−−−−→
n→∞

v0
± in L1(R3) and∫

R3

|∇v±n | −−−−→
n→∞

∫
R3

|∇v0
±|.

Note by this construction that the sets F±n are smooth and disjoint for each n.
Hence, the construction in [34] may be done separately for the components F±n for
any 0 < ε < ηn, with ηn > 0 being chosen so that the neighborhoods of radius

√
ε of

the boundaries F±n are disjoint. Thus, applying the result of Sternberg [34]1 for each
n ∈ N and each 0 < ε < ηn, there exists ṽ±n,ε(x) ∈ H1(R3) with ṽ+

n,ε, ṽ
−
n,ε disjointly

supported, 0 ≤ ṽ±n,ε ≤ 1, and
(3.1)

‖ṽ±n,ε − v±n ‖L1(R3) −−−−→
ε→0+

0 and

∫
R3

[
ε

2
|∇ṽ±n,ε|2 +

1

2ε
W (ṽ±n,ε)

]
−−−−→
ε→0+

1

8

∫
R3

|∇v±n |.

Writing ṽn,ε = ṽ+
n,ε − ṽ−n,ε (again, a disjoint sum for all 0 < ε < ηn), the same

properties (3.1) hold for ṽn,ε and v0
n = v+

n − v−n .
Next, we adjust the ṽn,ε so that, for each n, ε, each has an L2 norm equal to M

and hence defines a function in H M . For this, we use dilation: Let

λε := (‖ṽn,ε‖2L2(R3)/M)
1
3 −−−−→
ε→0+

1.

We define the rescaled functions v̂n,ε : R3 → R by

v̂n,ε(x) := ṽn,ε (λεx) and v̂±n (x) := v±n (λεx).

1We note that the potential in [34] has two wells at u = ±1, whereas our transitions connect
v = 0 to v = ±1, and so our ṽ±n,ε = 1

2
(ρε + 1) for ρε as constructed in [34].
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First, by rescaling, we have ‖v̂n,ε‖2L2(R3) = M , and so v̂n,ε ∈H M for all n, ε. Next, we

observe that, since the supports F±n of the components of v0
n are smooth, for |λε − 1|

sufficiently small, we may estimate

‖v̂0
n − v0

n‖L1(R3) ≤ c|λ
1
3
ε − 1|

∫
R3

|∇v0
n|.

Hence, we have convergence in the L1 norm:

0 ≤ ‖v̂n,ε − v0
n‖L1(R3) ≤ ‖v̂n,ε − v̂0

n‖L1(R3) + ‖v̂0
n − v0

n‖L1(R3)

≤ λ−1
ε ‖ṽn,ε − v0

n‖L1(R3) + c|λ
1
3
ε − 1|

∫
R3

|∇v0
n| −−−−→

ε→0+
0.

As each of |v̂n,ε| ≤ 1 almost everywhere in R3 and for fixed n each is of uniformly
bounded support, the convergence extends to any Lr(R3), r ≥ 1. Moreover,

(3.2)

∫
R3

[
ε

2
|∇v̂±n,ε|2 +

1

2ε
W (v̂±n,ε)

]
dx

=

[
λ
− 1

3
ε

∫
R3

ε

2
|∇ṽ±n,ε|2dx+ λ−1

ε

∫
R3

1

2ε
W (ṽ±n,ε)dx

]
−−−−→
ε→0+

1

8

∫
R3

|∇v0
n|,

which holds for each n ∈ N. As in [34], by a diagonal argument, there exists ε0 =
ε0(v0) > 0 so that, for any sequence εk −−−−→

k→∞
0+ with εk < ε0, we obtain a sequence

{vεk}k∈N with

‖vεk − v0‖rL(R3) −−−−→
k→∞

0, r ≥ 1,

and

∫
R3

[
εk
2
|∇vεk |2 +

1

2εk
W (vεk)

]
dx −−−−→

k→∞

1

8

∫
R3

|∇v0
±|.

The local potential terms also converge by Lemma 2.3. Furthermore, by the
Hardy–Littlewood–Sobolev inequality [24, Theorem 4.3] (with p = 6/5 = r),

0 ≤
∣∣D(|vεk |2, |vεk |2)−D(|v0|2, |v0|2)

∣∣
=
∣∣D(|vεk |2 − |v0|2, |vεk |2 + |v0|2)

∣∣
≤
∥∥|vεk |2 − |v0|2

∥∥
L

6
5 (R3)

∥∥|vεk |2 + |v0|2
∥∥
L

6
5 (R3)

−−−−→
k→∞

0.

This completes the proof of Lemma 3.1.

Proof of (ii) of Theorem 1.1. If {ui}∞i=0 is a finite collection with N nontrivial
components, this follows easily from Lemma 3.1. Indeed, for any sequence εk −−−−→

k→∞
0+ with 0 < uiεk < mini=0,...,N{ε0(ui)}i=0,...,N , we apply the lemma to find uiεk
with uiεk −−−−→k→∞

ui and E V
εk

(uiεk) −−−−→
k→∞

E V
0 (ui), i = 0, . . . , N . We then define the

superposition,

uεk(x) = u0
εk

(x) +

N∑
i=1

uiεk(x− xik),

with translations {xik}k∈N, which will be chosen such that dist(supp (uiεk), supp (ujεk))→
∞ ∀i 6= j = 0, . . . , N . We note that this condition on the translations ensures that
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the energy E V
εk

(uεk) asymptotically splits,

E V
εk

(uεk) = E V
εk

(u0
εk

) +

N∑
i=1

E V
εk

(uiεk) + o(1),

= E V
εk

(u0
εk

) +

N∑
i=1

E 0
εk

(uiεk) + o(1),

as D(|uiεk(· − xiεk)|2, |ujεk(· − xjεk)|2) −−−−→
k→∞

0 ∀i 6= j (as a consequence of (3.4)) and

V (x) −−−−→
|x|→∞

0.

If {ui}∞i=0 has an infinite number of nontrivial elements, we must be more careful.
In particular, as we go down the list of the {ui}∞i=0, the characteristic length scale of
each ui gets smaller, and, for any particular ε > 0, there can only be a finite number
of i with 0 < ε < ε0(ui), for which the trial functions uiε can be constructed via
Lemma 3.1.

Take any decreasing sequence εk −−−−→
k→∞

0+. By Lemma 3.1 and part (i) of Theo-

rem 1.1, for each i = 0, 1, 2, . . . , there exist εi = ε0(ui) > 0 and a sequence {uiεk}k∈N,
defined for 0 < εk < εi, for which

‖uiεk‖
2
L2(R3) = mi, E V

εk
(uiεk) −−−−→

k→∞
E V

0 (ui), ‖uiεk − u
i‖L2(R3) −−−−→

k→∞
0.

By taking εi smaller if necessary, we may also assume
(3.3)

∣∣E V
εk

(u0
εk

)− E V
0 (u0)

∣∣ < E V
0 (u0)

10
and ‖u0

εk
− u0‖2L2(R3) <

m0

10
, 0 < εk < ε0,∣∣E 0

εk
(uiεk)− E 0

0 (ui)
∣∣< E 0

0 (ui)

10
and ‖uiεk − u

i‖2L2(R3) <
mi

10
, 0 < εk < εi, i = 1, 2, 3, . . .

Again taking εi smaller if necessary, we may assume 0 < εi < εi−1. We now construct
Uεk as follows: For each k ∈ N, choose the largest integer nk ≥ 0 such that 0 < εk < εi

for all i ≤ nk. Note that nk −−−−→
k→∞

∞. We recall that the uiεk are all compactly

supported and define Riεk by supp (uiεk) ⊂ BRiεk (0). Let

R̄εk = max
i=1,...,nk

Riεk .

Then we choose the translations xik ∈ R3, i = 1, . . . , nk, so that

|xik − x
j
k| > max

{
4R̄εk , 2

k
}
−−−−→
k→∞

∞.

Then we set

Uεk(x) := u0
εk

(x) +

nk∑
i=1

uiεk(x− xik),

which is a disjoint sum. As V ≥ 0, we have

E V
εk

(Uεk) ≤ E V
εk

(u0
εk

) +

nk∑
i=1

E 0
εk

(uiεk) +

nk∑
i,j=1
i6=j

D(|uiεk(· − xiεk)|2, |ujεk(· − xjεk)|2).
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3512 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

We claim that the last term on the right side above is negligible. Indeed, for
x ∈ BR̄εk (xiεk) and x ∈ BR̄εk (xjεk), we have the pointwise estimate

(3.4)

∣∣∣∣∣ 1

|x− y|
− 1

|xiεk − x
j
εk |

∣∣∣∣∣ ≤ 2R̄εk(
|xiεk − x

j
εk | − R̄εk

)2 ≤
4R̄εk

|xiεk − x
j
εk |2
≤ 1

|xiεk − x
j
εk |
.

Hence,

nk∑
i,j=1
i6=j

D(|uiεk(· − xiεk)|2, |ujεk(· − xjεk)|2) ≤
nk∑
i,j=1
i6=j

‖uiεk‖
2
L2(R3)‖u

j
εk
‖2L2(R3)

|xiεk − x
j
εk |

≤ 2−k
nk∑
i,j=1
i6=j

mimj ≤ 2−kM2 −−−−→
k→∞

0.

As a result, for any given δ > 0, there exists K ∈ N, for which

(3.5) E V
εk

(Uεk) ≤ E V
εk

(u0
εk

) +

nk∑
i=1

E 0
εk

(uiεk) +
δ

5
∀k ≥ K.

Note also that the mass ‖Uεk‖2L2(R3) =
∑nk
i=0m

i =: Mk < M , but it will approach M
as nk →∞, and components are successively added to the sum.

We next show that

(3.6) lim sup
k→∞

E V
εk

(Uεk) ≤ FV
0 ({ui}∞i=0).

In case FV
0 ({ui}∞i=0) = ∞ (which is possible because the nonlocal terms are not

necessarily summable for all {ui}∞i=0 ∈ H M
0 ), there is nothing to prove. When

FV
0 ({ui}∞i=0) <∞, choose N ∈ N (which is independent of k), for which

(3.7)

∞∑
i=N+1

mi < δ and

∞∑
i=N+1

E 0
0 (ui) <

δ

5
.

From Lemma 3.1, taking K ∈ N larger if necessary, we have, for all k ≥ K,

(3.8)

N∑
i=0

‖uiεk − u
i‖2L2(R3) +

∣∣E V
εk

(u0
εk

)− E V
0 (u0)

∣∣+

N∑
i=1

∣∣E 0
εk

(uiεk)− E 0
0 (ui)

∣∣ < δ

5
.

Using (3.5), (3.8), (3.7), and (3.3), we estimate

E V
εk

(Uεk)−FV
0 ({ui}∞i=0) ≤ E V

εk
(Uεk)− E V

0 (u0)−
N∑
i=0

E 0
0 (ui)

≤ E V
εk

(u0
εk

)− E V
0 (u0) +

N∑
i=1

[E 0
εk

(uiεk)− E 0
0 (ui)]

+

nk∑
i=N+1

|E 0
εk

(uiεk)− E 0
0 (ui)|+

nk∑
i=N+1

E 0
0 (ui) +

δ

5

D
ow

nl
oa

de
d 

07
/0

4/
23

 to
 6

9.
12

.2
3.

37
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF TFDW 3513

<
2δ

5
+

11

10

nk∑
i=N+1

E 0
0 (ui) < δ

for all k ≥ K. Hence, (3.6) is verified.
We next prove that∣∣∣∣∣

∣∣∣∣∣Uεk −
(
u0 +

∞∑
i=0

ui(x− xik)

)∣∣∣∣∣
∣∣∣∣∣
L2(R3)

−−−−→
k→∞

0.

For given δ > 0, let N,K ∈ N be as in (3.7) and (3.8). Then, for all k ≥ K, using
(3.7), (3.3), and (3.8), we estimate∥∥∥∥∥Uεk −

(
u0 +

∞∑
i=0

ui(x− xik)

)∥∥∥∥∥
L2(R3)

≤
N∑
i=0

‖uiεk − u
i‖L2(R3) +

nk∑
i=N+1

‖uiεk − u
i‖L2(R3)

+

∞∑
i=nk+1

‖ui‖L2(R3)

≤ δ

5
+

nk∑
i=N+1

mi

10
+
δ

5
< δ.

It remains to correct the mass of Uεk so that each ‖Uεk‖2L2(R3) = M . This

is done as in Lemma 3.1, dilating each component uiεk by the scaling factor λk =

(Mk/M)
1
3 −−−−→
k→∞

1, that is, by setting

uεk(x) = u0
εk

(λkx) +

nk∑
i=1

uiεk(λk(x− xk)).

Then ‖uεk‖2L2(R3) = M , k ∈ N, ‖uεk − Uεk‖L2(R3) −−−−→
k→∞

0, and

|E V
εk

(uεk)− E V
εk

(Uεk)| −−−−→
k→∞

0

since λk −−−−→
k→∞

1. This concludes the proof of Theorem 1.1.

4. Minimizers. In this section, we examine the connection between minimizers
of the liquid drop and TDFW functionals, the compactness of minimizing sequences
being a delicate issue which is shared by the two models.

First, whether the minimum in eVε (M) is attained or not, the infimum values
converge as ε→ 0+.

Lemma 4.1. Assume V satisfies (1.4). Then, for all M > 0, eVε (M)−−−−→
ε→0+

eV0 (M).

Proof. The proof is standard. Take any sequence εn −−−−→
n→∞

0+. Then, ∀n,

∃uεn ∈ H M with ‖uεn‖2L2(R3) = M and E V
εn(uεn) ≤ eVεn(M) + εn. Using u0 = 1BM

in Lemma 3.1, we may conclude that {eVεn(M)}n∈N is bounded, and so, by Theo-
rem 1.1(i), ∃{ui}∞i=0 ∈H M

0 and a subsequence (not relabeled) εn −−−−→
n→∞

0+ with

eV0 (M) ≤ FV
0 ({ui}∞i=0) ≤ lim inf

n→∞
E V
εn(uεn) = lim inf

n→∞
eVεn(M).
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3514 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

For the complementary inequality, for any δ > 0, ∃{vi}∞i=0 ∈H M
0 with FV

0 ({vi}∞i=0) <
eV0 (M) + δ. Then, by (ii) in Theorem 1.1, for any n ∈ N, ∃vn ∈H M with

eV0 (M) + δ > FV
0 ({vi}∞i=0) ≥ lim sup

n→∞
E V
εn(vn) ≥ lim sup

n→∞
eVεn(M).

Putting the above inequalities together and letting δ → 0+, every sequence εn → 0
contains a subsequence for which eVεn(M) −−−−→

n→∞
eV0 (M). As the limit is unique, the

lemma follows.

Proof of Corollary 1.4. In [3, Theorems 1 and 2], it is proven that, for V satisfy-
ing (1.9), the minimum for both E V

0 and E V
ε are attained, correspondingly. Indeed,

the proof of these results in [3] actually yields the stronger conclusion that all mini-
mizing sequences for either the TDFW or the liquid drop functional are convergent.
Thus, ∀ε > 0, ∃uε ∈ H M , which attains the minimum, eVε (M) = E V

ε (uε). By
Lemma 4.1, E V

ε (uε) −−−−→
ε→0+

eV0 (M), so, for any sequence εn −−−−→
n→∞

0+, by Theo-

rem 1.1(i), ∃{ui}∞i=0 ∈H M
0 with

FV
0 ({ui}∞i=0) ≤ lim inf

n→∞
E V
εn(uεn) = eV0 (M).

Defining mi =: ‖ui‖2L2(R3), we have

(4.1) eV0 (M) = eV0 (m0) +

∞∑
i=1

e0
0(mi).

We now claim that ui = 0 ∀i ≥ 1, in which case uεn −−−−→
n→∞

u0 in L2(R3), as

desired. Indeed, assume the contrary, m1 > 0. We then obtain a contradiction by
using Step 6 in the proof of [3, Theorem 1]. Indeed, by choosing compactly supported
v0, v1 ∈H M , whose energies are close to the infima eV0 (m0), e0

0(m1) as in Step 6, we
obtain the strict subadditivity condition,

eV0 (M) < eV0 (m0) + e0
0(m1) + e0

0(M −m0 −m1) ≤ eV0 (m0) +

∞∑
i=1

e0
0(mi),

which contradicts (4.1).

Analyzing the possible loss of compactness in minimizing sequences for eZε (M),
ε ≥ 0 and Z ≥ 0, requires the use of concentration-compactness methods [25]. The
following are standard results for problems where loss of compactness entails splitting
of mass to infinity.

Lemma 4.2. Assume V satisfies (1.4). Then, for any ε ≥ 0 and M > 0,
(i) if ∀m0 ∈ (0,M),

(4.2) eVε (M) < eVε (m0) + e0
ε(M −m0),

then all minimizing sequences for eVε (M) are precompact in L2(R3);
(ii) if there exist divergent minimizing sequences for eVε (M), then ∃m0 ∈ (0,M)

such that eVε (m0) attains a minimizer and eVε (M) = eVε (m0) + e0
ε(M −m0).

Statement (ii) is a slight strengthening of the contrapositive of (i). The proof for
the TFDW functional was done in [26, Corollary II.2, part (ii)], and for liquid drop
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models it may be derived from [2, Lemma 6]; although it is stated there for V of a
special form, in fact it is true for a much larger class including those satisfying (1.4).

Next, we specialize to the atomic case,

V (x) =
Z

|x|
,

and present the following refinement of the existence result of [28] for the liquid drop
model with atomic potential.

Proposition 4.3. There exists a constant µ0 > 0 such that, for all Z ≥ 0 and
for all M ∈ (0, Z + µ0),

(i) all minimizing sequences for eZ0 (M) are precompact;
(ii) the unique minimizer (up to translations if Z = 0) of eZ0 (M) is the ball BM (0)

of radius rM = ( 3M
4π )1/3.

Proof. Statement (ii) is proven in [28, Theorem 2], using [18, Theorem 2.1]. (The
special case Z = 0 was proven earlier in [19].) We sketch the proof of (i) since we
will need certain definitions and estimates for (ii). As in Julin [18], we define an
asymmetry function corresponding to a fixed set Ω of finite perimeter,

γ(Ω) := min
y∈R3

∫
R3

1B(x)− 1Ω(x+ y)

|x|
dx,

where B = BM (0) is the ball of mass M centered at the origin. The quantitative
isoperimetric inequality (see [18, equation (2.3)] or [16]) then asserts the existence of
a universal constant µ0 > 0 such that∫

R3

|∇1Ω| −
∫
R3

|∇1B | ≥ µ0γ(Ω),

with equality if and only if Ω is a translate of B. Then, as in the proof of [18,
Theorem 1.1] in the three-dimensional case, we may estimate the difference in the
nonlocal terms by the asymmetry

D(1B ,1B)−D(1Ω,1Ω) ≤ |B|γ(Ω).

The optimality of the ball B = BM follows easily from this: Assume Ω is of finite
perimeter, with |Ω| = M . Then, provided Ω is not a translate of the ball B = BM ,

(4.3) E Z
0 (1Ω)− E Z

0 (1B) > (µ0 −M)γ(Ω) + Z

(∫
R3

1B(x)− 1Ω(x)

|x|
dx

)
≥ (Z + µ0 −M) γ(Ω) > 0

for all M < Z + µ0.
To obtain (i), the precompactness of all minimizing sequences, we use the above

to establish strict subadditivity of eZ0 (M), as in Lions [25]. Let M = m0 + m1 with
m0,m1 > 0; we will show that (4.2) holds, and then, by Lemma 4.2, all minimizing
sequences for eZ0 (M) are precompact.

Since 0 < m0 < M < Z + µ0, both eZ0 (M) and eZ0 (m0) are attained by balls
B = BM (0), B0 = Brm0 (0). For any δ > 0 (to be chosen later), we may choose a
bounded open set ω with 0 ∈ ω, |ω| = m1 and E0(1ω) < e0

0(m1) + δ. Note that if
m0 ≥ Z, then 0 < m1 < µ0, and we may choose ω = B1 = Brm1 , which attains
e0

0(m1).
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3516 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

Define ωξ := ω + ξ and Ω = Ωξ = B0 ∪ ωξ, with |ξ| sufficiently large that the
union is disjoint. We first claim that ∃R > 1 such that γ(Ωξ) ≥ C > 0 is bounded
away from zero for all ξ with |ξ| > R, with constant C = C(m0,m1). Indeed, for
y ∈ R3, define

v = v0 + v1, v0(y) =

∫
B0

dx

|x− y|
, v1(y) =

∫
ωξ

dx

|x− y|
,

so that

γ(Ωξ) =

∫
B

dx

|x|
−max
y∈R3

v(y).

Hence, to bound γ(Ωξ) from below, we must bound v(y) uniformly from above. As

−∆v = 4π(1B0(y) + 1ωξ(y)) in R3, it attains its maximum at y ∈ Ωξ = B0 ∪ ωξ.
Thus, there are two possibilities: If the maximum occurs at y ∈ B0, then v(y) =
v0(y) + O(|ξ|−1). Since v0 is maximized at y = 0, there exists C0 = C0(M,m0) and
R > 1 with

γ(Ωξ) ≥
∫
B\B0

dx

|x|
−O(|ξ|−1) ≥ C0 > 0

for all |ξ| > R.
In case the maximum of v occurs at y ∈ ωξ, then v(y) = v1(y) + O(|ξ|−1). For

any domain D with |D| = m1, we have∫
D

dx

|x|
≤
∫
B1

dx

|x|
,

where B1 = Brm1 (0) is the ball with mass m1. It follows that

v1(y) =

∫
ωξ

dx

|x− y|
≤
∫
B1

dx

|x|
.

Therefore, as in the previous case, there exist C1 = C1(M,m1) and R > 1 with
γ(Ωξ) ≥ C1 > 0 for all |ξ| > R, and the claim is established, with C = min{C0, C1}.

To conclude, we choose 0 < δ < 1
2 (Z + µ0 −M)C ≤ 1

2 (Z + µ0 −M) γ(Ωξ) for
any |ξ| > R and, using (11),

eZ0 (M) = E Z
0 (1B) < E Z

0 (1Ωξ)− (Z + µ0 −M) γ(Ωξ)

≤ E Z
0 (1B0) + E Z

0 (1ωξ)− (Z + µ0 −M) γ(Ωξ) + 2

∫
B0

∫
ωξ

dx dy

|x− y|

≤ E Z
0 (1B0) + E 0

0 (1ω)− (Z + µ0 −M) γ(Ωξ) +O(|ξ|−1)

≤ eZ0 (m0) + e0
0(m1) + δ − (Z + µ0 −M) γ(Ωξ) +O(|ξ|−1).

Taking |ξ| sufficiently large, (4.2) holds for all M ∈ (0, Z + µ0).

Remark 4.4. Thanks to Proposition 4.3, we may conclude that for the liquid drop
model with V (x) = Z/|x| with 0 < M < Z + µ0, the unique generalized minimizer
(see Definition 1.2) is the singleton {u0 = 1BM }. Indeed, this will be true for any
functional which satisfies the strict subadditivity condition (4.2).

Next, we prove Theorem 1.3. In fact, we prove the following slightly more general
version, which will also be a step toward the proof of Theorem 1.5.
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Lemma 4.5. Let M > 0 and δn, εn −−−−→
n→∞

0. Assume un ∈ H M , for which

E V
εn(un) ≤ eVεn(M) + δn for each n ∈ N. Then there exists a subsequence and a

generalized minimizer {u0, . . . , uN} of E V
0 , for which (1.6) and (1.7) hold for i =

0, . . . , N and
FV

0 ({ui}Ni=0) = eV0 (M) = lim
n→∞

eVεn(M).

Proof. By (i) of Theorem 1.1, there exists a subsequence along which un de-
composes as in (1.6), with {ui}∞i=0 ∈ H M

0 satisfying (1.8). By (ii) of Theorem 1.1,
the upper bound construction provides sequences vεn ∈ H M yielding the opposite
inequality:

FV
0 ({ui}∞i=0) ≥ lim sup

n→∞
E V
εn(vn) ≥ lim

n→∞
eVεn(M).

Hence, by Lemma 4.1, we have

FV
0 ({ui}∞i=0) = lim

n→∞
E V
εn(un) = lim

n→∞
eVεn(M) = eV0 (M).

Let mi = ‖ui‖2L2(R3). It suffices to show that u0 minimizes eV0 (m0) and ui minimizes

e0
0(mi) for each i ≥ 1 and that all but a finite number of the ui ≡ 0. First, by (1.5),

we have

(4.4) eV0 (m0) +

∞∑
i=1

e0
0(mi)

≤ E V
0 (u0) +

∞∑
i=1

E 0
0 (ui) = FV

0 ({ui}∞i=0) = eV0 (M) ≤ eV0 (m0) +

∞∑
i=1

e0
0(mi),

the last step by the binding inequality (subadditivity) of e0. (See, e.g., [2].) As
each term is nonnegative, equality holds in each relation. Furthermore, as eV0 (m0) ≤
E V

0 (u0) and each e0
0(mi) ≤ E 0

0 (ui), we must have equality in these as well. This proves
that each ui, i ≥ 0, is minimizing.

Finally, suppose infinitely many ui 6≡ 0. Then, by the convergence of the series,
0 < mi < µ0 for all but finitely many i; assume 0 < mj ,mj+1 < µ0. Then, as in
the proof of Proposition 4.3, we obtain the strict subadditivity condition, e0

0(mj) +
e0

0(mj+1) > e0
0(mj +mj+1). But then

eV0 (M) = eV0 (m0) +

∞∑
i=1

e0
0(mi) > eV0 (m0) +

∑
i6=j,j+1

e0
0(mi) + e0

0(mj +mj+1) ≥ eV0 (M),

a contradiction.

We finish with the proof of Theorem 1.5.

Proof. Recall that we assume V (x) = Z/|x|, Z > 0. For (a), 0 < M ≤ Z, the
(relative) compactness of all minimizing sequences for eZε (M) was proven by Lions [26,
Corollary II.2]. Take any sequence εn → 0, and let un ∈H M with E Z

εn(un) = eZεn(M).
By Lemma 4.5, there exists a generalized minimizer of eZ0 (M), {ui}Ni=0 such that (1.6)
and (1.7) hold for i = 0, . . . , N and a subsequence for which

FZ
0 ({ui}Ni=0) = eZ0 (M) = lim

n→∞
eZεn(M).

By Remark 4.4, N = 0 and un −−−−→
n→∞

u0 in L2(R3), which attains the minimum in

eZ0 (M). As u0 = 1BM is unique, the limit exists for any sequence ε→ 0.
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3518 L. AGUIRRE SALAZAR, S. ALAMA, AND L. BRONSARD

For (b), first note that if there is a sequence εn −−−−→
n→∞

0+ for which eZεn(M)

attains its minimum at un ∈H M , then, by the same argument as for (a), we obtain
the conclusion of the Theorem with Mεn = M . It therefore suffices to consider
sequences εn −−−−→

n→∞
0+ for which the minimum in eZεn(M) is not attained. By part

(ii) of Lemma 4.2, for each n there exists m0
n ∈ (0,M) such that

eZεn(M) = eZεn(m0
n) + e0

εn(M −m0
n),

and there exists un ∈ H1(R3) with ‖un‖2L2(R3) = m0
n and E Z

εn(un) = eZεn(m0
n). For

each n, we may choose vn ∈ H1(R3) with compact support and ‖vn‖2L2(R3) = M −m0
n

and for which E 0
εn(vn) < e0

εn(M−m0
n)+εn. Next, choose radii ρn in the smooth cutoff

ωρn defined in (2.3) such that ũn = unωρn satisfies both ‖ũn−un‖2L2(R3) −−−−→n→∞
0 and

|E Z
εn(ũn) − E Z

εn(un)| −−−−→
n→∞

0. We also choose ξn ∈ R3 such that ũn and vn(· + ξn)

have disjoint supports for each n and |ξn| −−−−→
n→∞

∞. Set Un(x) = ũn(x) + vn(·+ ξn),

so that

‖Un‖2L2(R3) = ‖ũn‖2L2(R3) + ‖vn‖2L2(R3) −−−−→n→∞
M and |E Z

εn(Un)− eZεn(M)| −−−−→
n→∞

0.

By Lemma 4.1, E Z
εn(Un) −−−−→

n→∞
eZ0 (M), so, applying (i) of Theorem 1.1, there exists

{ui}∞i=0 ∈H M
0 , for which (1.6) and (1.7) hold, and

eZ0 (M) ≤ FZ
0 ({ui}∞i=0) ≤ lim inf

n→∞
E Z
εn(Un) = eZ0 (M).

Thus, FZ
0 ({ui}∞i=0) = eZ0 (M). By Remark 4.4, ui ≡ 0 for all i ≥ 1 and u0 = 1BM

minimizes eV0 (M). From (1.6), we conclude that Un = ũn + vn(· + ξn) −−−−→
n→∞

u0

in L2(R3). Since for every fixed compact set K ⊂ R3 we have Un = un almost
everywhere in K and for all sufficiently large n, it follows that un −−−−→

n→∞
u0 in L2

loc(R3)

and pointwise almost everywhere up to a subsequence. Fix the compact set K with
BM b K. Then

M =

∫
K

|u0|2 ≤ lim inf
n→∞

∫
K

|un|2 dx ≤ lim inf
n→∞

m0
n ≤M.

Each of the above quantities is therefore equal, and limn→∞m0
n = limn→∞ ‖un‖2L2(R3) =

M . Consequently, we have both un −−−−→
n→∞

u0 and vn −−−−→
n→∞

0 globally in L2(R3). In

conclusion, takingMεn = m0
n, eZεn(Mεn = m0

n) is attained at uεn = un, Mεn −−−−→
n→∞

M ,

and un −−−−→
n→∞

u0 = 1BM in L2(R3).
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[19] H. Knüpfer and C.B. Muratov, On an isoperimetric problem with a competing nonlocal term
II: The general case, Comm. Pure Appl. Math., 67 (2014), pp. 1974–1994.
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