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ABSTRACT
We consider minimization problems of the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) type in which the Newtonian potential is per-
turbed by a background potential satisfying mild conditions, which ensures the existence of minimizers. We describe the structure of
minimizing sequences for those variants and obtain a more precise characterization of patterns in minimizing sequences for the TFDW
functionals regularized by long-range perturbations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5130565

I. INTRODUCTION
In this paper, we are concerned with energy functionals that include the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) model, a

physical model describing ground state electron configurations of many-body systems. More precisely, we consider the following variational
problem:

IV (M) ∶= inf{E V (u) : u ∈H 1(R3), ∣∣u∣∣2L 2(R3) =M}, (1.1)

where the energy E V is defined as

E V (u) ∶= ∫R3
[∣∇u(x)∣2 + c1∣u(x)∣

10
3 − c2∣u(x)∣

8
3 − V(x)u2(x)]dx

+
1
2∫R3

∫R3

u2(x)u2(y)
∣x − y∣

dxdy,

with c1, c2 > 0,

V ≥ 0, V ∈L
3
2 (R3) + L∞(R3), and lim

∣x∣→∞
V(x) = 0. (1.2)

The conditions above ensure that IV is finite, E V is coercive in H 1(R3) on the constraint set, and

u ∈H 1(R3)↦ ∫R3
V(x)u2(x)dx

is weakly continuous.
The TFDW model corresponds to the choice
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VTF(x) =
K

∑
k=1

αk

∣x − rk∣
, (1.3)

with K ∈ N, {αk}
K
k=1 ⊂ R

+ and {rk}
K
k=1 ⊂ R

3 all fixed. In this case, E V (M) is to be thought of as the energy of a system of M electrons interacting
with K nuclei. Each nucleus has charge αk > 0, and it is fixed at a position rk. The total nuclear charge is denoted as

Z =
K

∑
k=1

αk > 0

and plays a key role in existence results (see the works of Frank, Nam, and Van Den Bosch1 and Lieb2 for a survey).
In this paper, we explore the structure of minimizing sequences for IV , with V chosen to be a perturbation of the molecular potential

VTF . Despite the coercivity of the problem, the existence of a minimizer for IV is a highly nontrivial problem due to the lack of compactness
at infinity. For the unperturbed TFDW problem, V = VTF , Lions3 proved that there exists a minimizer if M ≤Z and Le Bris4 extended this
result to M ≤Z + ϵ for some ϵ = ϵ(Z ) > 0. With regard to non-existence, Nam and Van Den Bosch proved that there are no minimizers if
both M is sufficiently large and Z is sufficiently small, and Frank, Nam, and Van Den Bosch5 proved the nonexistence of a minimizer for
M >Z + C, for some universal C > 0, in the case there is only one nucleus [i.e., K = 1 in (1.3)].

There is a special class of potentials V for which the existence problem for IV is completely understood. We say that V is a long-range
potential if it satisfies (1.2) and

lim inf
t→∞

t( inf
∣x∣=t

V(x)) =∞. (1.4)

For example, the homogeneous potentials Vν(x) = ∣x∣−ν are of long-range for 0 < ν < 1. For long-range potentials (1.4), Alama et al.6 showed
that IV (M) is attained for every M > 0. Thus, we may perturb the TFDW potential via a long-range potential of the form Vν and think of this
as a regularized version of TFDW. We, thus, define a family of long-range potentials,

VZ(x) = VTF(x) +
Z
∣x∣ν

, 0 < ν < 1, (1.5)

with parameter Z > 0. By taking a sequence Zn → 0, we recover the TFDW model, but via a special minimizing sequence un composed of
minimizers of the long-range problem, E Vn (un) = IVn . A special role is played by the minimization problem I0, that is with potential V ≡ 0,
which is the “energy at infinity” obtained by translating u(⋅ + xn) with ∣xn∣→∞. The existence properties for I0(M) are analogous to those of
IVTF : the minimizer exists for sufficiently small M > 0 [see Ref. 5, Lemma 9 (iii)], and there is no minimizer for all large M (see Ref. 7).

It will be convenient to introduce the following set of values of the constrained mass M in IV (M),

M V ∶= {M > 0 ∣IV (M) has a minimizer u ∈H 1(R3), ∫R3
u2
=M}.

It is an open question to determine whether M V is an interval, for any choice of potential V .
In case u ∈H 1(R3) attains the minimum in IV [respectively, u0 ∈H 1(R3) attains the minimum in I0], the minimizers will satisfy the

partial differential equations (PDEs),

−Δu +
5
3

c1u∣u∣
4
3 −

4
3

c2u∣u∣
2
3 − Vu + (∣u∣2 ⋆ ∣ ⋅ ∣−1

)u = μu, (1.6)

−Δu0 +
5
3

c1u0∣u0∣
4
3 −

4
3

c2u0∣u0∣
2
3 + (∣u0∣

2
⋆ ∣ ⋅ ∣

−1
)u0 = μu0, (1.7)

with Lagrange multiplier μ induced by the mass constraint.
As mentioned above, the existence question is complicated by noncompactness due to translations of mass to infinity. However,

minimizing sequences may be characterized using a general concentration–compactness structure (see Refs. 8 and 3).

Concentration Theorem I.1. Let {un}n∈N be a minimizing sequence for IV (M), where V satisfies (1.2). Then, there exist a number
N ∈ N ∪ {0}, masses {mi

}
N
i=0 ⊂ R+, translations {x0

n}n∈N, . . . ,{xN
n }n∈N ⊂ R3, and functions {ui

}
N
i=0
⊂H 1(R3) such that, up to a subsequence,

un(⋅) −
N

∑
i=0

ui
(⋅ − xi

n)→ 0 in H 1(R3), (1.8)
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IV (m0) = E V (u0), I0(mi) = E 0(ui), i > 0,

where ∣∣ui
∣∣

2
L 2(R3) = mi,

(1.9)

N

∑
i=0

mi
=M, IV (m0) +

N

∑
i=0

I0(mi) = IV (M), (1.10)

∣xi
n − xj

n∣→∞, i ≠ j. (1.11)

The functions ui satisfy (1.6) for i = 1, . . ., N and u0 satisfies (1.7), each with the same Lagrange multiplier μ ≤ 0.
Moreover, if V ≢ 0, then we can take x0

n = 0.

If a minimizer exists, then no splitting is necessary, and there exist minimizing sequences with N = 0. This occurs for VTF when the
mass is not much larger than the total charge, M ≤Z + ϵ (by Ref. 4), for instance, or for any M > 0 in the class of long-range potentials (1.4).
However, for TFDW with large mass M we expect splitting, but the pieces resulting from noncompactness must each minimize IV or I0 for
its given mass, that is,

m0
∈M V , mi

∈M 0, i > 0.

The basic idea behind the result is very elegant and intuitive. Minimizing sequences un for IV (M) may lose compactness due to split-
ting into widely spaced components, each of which tends to a minimizer of IV or (for those components which translate off to infinity) I0.
Asymptotically, all of the mass M is accounted for by this splitting. Although the pieces eventually move infinitely far away, they retain some
information on the original minimization problem in that they share the same Lagrange multiplier.

Concentration results of this type have appeared in many papers. For TFDW, a very similar result is outlined (although with possibly
infinitely many components ui) in Ref. 3 and a proof of the exact decomposition of energy (1.10) for the case V ≡ 0 is given in Ref. 5, Lemma 9.
Since this concentration theorem is central to the statements and proof of our results, we provide a proof in Appendix A. The finiteness of the
components is a result of the concavity of the energy E V for small masses, which we prove in Appendix B.

For perturbations of TFDW, we obtain more precise information on the splitting structure. In particular, when mass splits off to infinity,
the piece which remains localized must have mass m0

≥Z , the total nuclear charge.

Theorem I.2. Assume V satisfies (1.2) and

V(x) ≥ VTF(x) =
K

∑
k=1

αk

∣x − rk∣
, a.e. inR3,

for some K ∈ N, {αk}
K
k=1 ⊂ R

+ and {rk}
K
k=1 ⊂ R

3.
Then, with the notation of Theorem I.1, for any minimizing sequence {un}n∈N of IV (M), either M ∈M V or splitting occurs with

m0
≥Z = ∑

K
k=1αk.

Heuristically, this is a satisfying result: after splitting, the nuclei should still capture as many electrons as the total nuclear charge Z . One
might expect that it should be able to retain more electrons to form a negatively charged ion.

Finally, we consider in greater detail the loss of compactness which may occur for the long-range regularized families Vn satisfying (1.12)
with 0 < ν < 1. First, minimizers of IVn (M) form a minimizing sequence for ITF(M), so when M is large compared to Z , compactness is lost
and mass splits off to infinity as described in Theorem I.1.

Proposition I.3. Let Zn → 0 and

Vn(x) = VTF(x) +
Zn

∣x∣ν
, (1.12)

with 0 < ν < 1, and Z = ∑
K
k=0αk. Let un minimize IVn (M), n ∈ N. Then,

(i) {un}n∈N is a minimizing sequence for IVTF .
(ii) Either M ∈M VTF or splitting occurs with m0

≥Z .

The nonlocal term in E Vn exerts a repulsive effect on the components ui, while the vanishing long-range potential provides some degree
of containment. The combination of attractive and repulsive terms generally leads to pattern formation, at a scale determined by the relative
strengths of the competitors. This phenomenon has been identified in nonlocal isoperimetric problems (such as the Gamow liquid drop
model, see Refs. 9 and 10).

J. Math. Phys. 61, 021502 (2020); doi: 10.1063/1.5130565 61, 021502-3

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

However, for potentials Vn of the form (1.12), the interactions between the fleeing components ui appear in the energy at order Z
1

1−ν
n .

Thus, we require some information about the spatial decay of the minimizers of E Vn away from the centers of the support in order to control
the errors in an expansion of the energy in terms of Zn → 0. In the liquid drop problems, the splitting is into characteristic functions of
disjoint bounded domains and this issue does not arise. In order to calculate interactions, we require exponential decay of the solutions,
which is connected to the delicate question of the Lagrange multiplier μ. In particular, we obtain exponential decay when μ < 0,

∣u(x)∣ ≤ Ce−λ∣x∣,

for any 0 < λ <√−μ. As the energy value IV (M) is strictly decreasing in M, we have μ ≤ 0 and in fact we would expect that μ < 0 should hold,
if not always, at least for all but a residual set of M. It is an open question whether μ < 0 holds whenever M ∈M . The strict negativity is
known for the cases V ≡ 0 with sufficiently small mass or with V = VTF with M <Z + κ with κ = κ(VTF) > 0 (see Proposition II.2).

We may now state our result on the distribution of masses in the case of splitting. First, we define

M ∗

V = {M ∈M V : every minimizer u of IV (M) satisfies (1.6) with μ < 0}. (1.13)

Theorem I.4. Let un be minimizers of IVn (M) with Vn satisfying (1.12) with 0 < ν < 1 and Zn → 0. Let N, {mi
}

N
i=0 and

{x0
n}n∈N, . . . ,{xN

n }n∈N be as in Theorem I.1. Assume N ≥ 1 and m0
∈M ∗

VTF
. Then, up to a subsequence and relabeling, either

(i) m0
> Z and

Z
1

1−ν
n xi

n → yi, i = 1, . . . , N,

where (y1, . . . , yN ) minimizes the interaction energy

FN,(m0 ,m1 ,...,mN )(w
1, . . . ,wN ) ∶= ∑

1≤i<j

mim j

∣wi −wj∣
+ (m0

−Z )
N

∑
i=1

mi

∣wi∣
−

N

∑
i=1

mi

∣wi∣ν

over
ΣN ∶= {(w1, . . . ,wN ) ∈ (R3

/{0})N : wi
≠ w j
}

or
(ii) m0

= Z, Z
1

1−ν
n x1

n → 0 and if N ≥ 2 we have

Z
1

1−ν
n xi

n → yi, i = 2, . . . , N,

where (y2, . . . , yN ) minimizes the interaction energy

FN,(m1 ,m2 ,...,mN )(w
2, . . . ,wN ) ∶= ∑

2≤i<j

mimj

∣wi −wj∣
+ m1

N

∑
i=2

mi

∣wi∣
−

N

∑
i=2

mi

∣wi∣ν

over
ΣN ∶= {(w2, . . . ,wN ) ∈ (R3

/{0})N−1 : wi
≠ wj
}.

Remark I.5. 1. The degenerate case m0
=Z is very delicate, as the term measuring the repulsion between the weakly convergent com-

ponent supported near zero and the diverging pieces is nearly exactly canceled by the attractive effect of the nuclear potential VTF . Thus,
the error terms in the expansion of the energy may exceed the principal term creating a net repulsion (or attraction) to the nuclei which is
difficult to estimate. For instance, if N = 1 and only one component splits to infinity, then all we can say when m0

=Z is that it diverges at
a rate much slower than Z−

1
1−ν . In some sense, there is no natural scale for its interaction distance to the nuclei. For this reason, we believe

that in fact m0
>Z but have no proof of this conjecture.

2. If m0
=Z , then m0

∈M ∗

VTF
automatically [see Proposition II.2 (ii)].

3. The proof of the compactness of all minimizing sequences of inf FN,(m0 ,m1 ,...,mN ) and inf FN,(m1 ,m2 ,...,mN ) follows with little modification from
the proof of Ref. 9, Proposition 8.

4. By Theorem I.1, each of the components ui shares the same Lagrange multiplier μ, and hence it suffices that any one of the components
satisfies (1.6) with μ < 0.

5. We do not know whether the condition μ < 0 could be improved. We use μ < 0 for uniform exponential decay of the functions un away
from xi

n, but some weaker uniform decay away from the mass centers may be sufficient. However, it is unclear how rapidly minimizers of
(1.1) decay when μ = 0.
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Finally, we note that the specific choice of powers p = 10
3 and q = 8

3 in the nonlinear potential well W(u) = c1∣u∣p − c2∣u∣q are physically
appropriate for the TFDW model, but from the point of view of analysis, other choices are possible. Indeed, most of the results of this paper
may be extended to the case 2 < q < 3 and q < p < 6. However, for q > 3, the behavior of minimizers may be substantially different: in such
case IV (M) = Ip,q

V (M) may vanish identically and minimizers may never exist for any M > 0 (see Lions3 for various examples). Thus, it is not
sufficient to have potentials W with a “double well” structure to observe the properties of TFDW minimizers; the relationship between the
powers appearing in the functional is of importance, as well.

II. BOUNDEDNESS AND DECAY OF MINIMIZERS
In this section, we prove various basic properties of IV (M) and its minimizers and we discuss the role of the Lagrange multiplier in the

decay of solutions.
The following properties are well-known for variational problems of the form (1.1):

Proposition II.1. Let V satisfy (1.2).

(i) For any M > 0, IV (M) < 0, and is strictly decreasing in M.
(ii) The following “binding inequality” holds for any 0 < m <M:

IV (M) ≤ IV (m) + I0(M −m). (2.1)

(iii) If IV (M) is attained at u ∈H 1(R3), then u solves (1.6) with Lagrange multiplier μ ≤ 0 and we may take u ≥ 0 in R3. It is possible to
choose u > 0 if V = VTF or V = VZ as defined in (1.5).

Proof. Statements (i) and (ii) can be proven as Lemma 5 of Nam and Van Den Bosch.5 With regard to (iii), (1.6) corresponds to the
Euler–Lagrange equation associated with IV (M), while μ ≤ 0 due to IV (M) being decreasing in M. We may take u ≥ 0 in R3 as IV (M)
= E V (u) = E (∣u∣). Finally, for potentials of the form VTF or as perturbed in (1.5), the positivity of minimizers follows from the Harnack
inequality. □

When the Lagrange multiplier μ < 0, we obtain exponential decay [see (66) in Ref. 3]: for all 0 < λ <√−μ, there exists a constant C with

∣u(x)∣ + ∣∇u(x)∣ ≤ Ce−λx, a.e. in R3. (2.2)

A categorization of the potentials V and masses M for which μ < 0 remains an important open question. The following proposition gives
various criteria under which the Lagrange multiplier μ < 0. We recall the definition of M ∗

V in (1.13).

Proposition II.2. (i) For V ≡ 0, ∃M0 > 0 so that if M <M0, then M ∈M ∗

V .
(ii) For V ≥ VTF satisfying (1.2), ∃κ = κ(Z ) > 0 so that if M <Z + κ, then M ∈M ∗

VTF
.

(iii) For V with long-range decay (1.4), every M ∈M ∗

V .
(iv) For V satisfying (1.2) such that

E ∶= inf{∫R3
(∣∇u∣2 − Vu2)dx : u ∈H 1(R3), ∣∣u∣∣L 2(R3) = 1} < 0, (2.3)

there exists MV > 0 so that if M <MV , then M ∈M ∗

V .
(v) For

V(x) =
K

∑
k=1

αk

∣x − rk∣
τ , a.e. in R3,

with {αk}
K
k=1 ⊂ R

+, {rk}
K
k=1 ⊂ R

3, and 0 < τ < 2, there exists MV > 0 so that if M <MV , then M ∈M ∗

V .

Proof. To verify (i), suppose that u is a minimizer. Equation (1.7) corresponds to the Euler–Lagrange equation associated with I0(M).
Regarding the strict negativity of μ, note that from (1.7),
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μM = ∫R3
∣∇u(x)∣2dx +

5
3

c1∫R3
∣u(x)∣

10
3 dx −

4
3

c2∫R3
∣u(x)∣

8
3 dx

+ ∫R3
∫R3

u2(x)u2(y)
∣x − y∣

dxdy. (2.4)

Moreover, since I0(M) = E 0(u) and ∣∣σ
3
2 u(σ⋅)∣∣2L 2(R3) =M for all σ > 0,

0 =
d

dσ
[E 0(σ

3
2 u(σ⋅))]∣

σ=1

= 2∫R3
∣∇u(x)∣2dx + 2c1∫R3

∣u(x)∣
10
3 dx − c2∫R3

∣u(x)∣
8
3 dx +

1
2∫R3

∫R3

u2(x)u2(y)
∣x − y∣

dxdy

or, equivalently,

5
3

c1∫R3
∣u(x)∣

10
3 dx = −

5
3∫R3

∣∇u(x)∣2dx +
5
6

c2∫R3
∣u(x)∣

8
3 dx

−
5

12∫R3
∫R3

u2(x)u2(y)
∣x − y∣

dxdy. (2.5)

Then, inserting (2.5) into (2.4) gives

μM = −
2
3∫R3

∣∇u(x)∣2dx −
1
2

c2∫R3
∣u(x)∣

8
3 dx +

7
12∫R3

∫R3

u2(x)u2(y)
∣x − y∣

dxdy.

We conclude by noting that, by Hardy–Littlewood’s inequality and the interpolation inequality in Lebesgue spaces,

∫R3
∫R3

u2(x)u2(y)
∣x − y∣

dxdy ≤ CM
2
3∫R3

∣u(x)∣
8
3 dx.

We observe that the Pohozaev identity associated with (1.7) does not bring new information about μ.
Statement (ii) is Theorem 1 by Le Bris,4 and (iii) is Theorem 2 of Alama–Bronsard–Choksi–Topaloglu.6
Statement (iv) follows by the same reasoning as in the proof of Lions (Ref. 3, Corollary II.2). Finally, (v) is a consequence of part (iv).

Indeed, note that the L 2-norm in R3 is invariant under the transformation u↦ uσ ∶= σ
3
2 u(σ⋅). Therefore, we can prove Eq. (2.3) holds by

first fixing any u ∈H 1(R3) with ∣∣u∣∣L 2(R3) = 1, and then taking σ sufficiently small so that

∫R3
(∣∇uσ ∣

2
− Vu2

σ)dx = ∫R3
[σ2
∣∇u(x)∣2 − στ

K

∑
k=1

αk

∣x − σrk∣
τ u2(x)]dx < 0.

□

We will require the following basic energy bound in many of our proofs. This result is proven in Lemma 6 of Alama–Bronsard–Choksi–
Topaloglu,6 although there it is stated for minimizing sequences, it is clear from the proof that in fact it applies to any function with negative
energy.

Lemma II.3. Assume V satisfies (1.2), and u ∈H 1(R3) with ∥u∥2
L 2(R3) =M and E V (u) < 0. Then, there exists a constant C0 = C0(V) > 0

such that

∥u∥2
H 1(R3) + ∫R3

∫R3

u2(x) u2(y)
∣x − y∣

dx dy + ∫R3
V(x)u2(x) dx ≤ C0M. (2.6)

Remark II.4. Note that boundedness of a sequence {un}n∈N in H 1(R3) implies boundedness of the same sequence in L r(R3) for 2 ≤ r ≤ 6.

The following is stated as part of Proposition I.3, but its proof only depends on the bounds stated in Lemma II.3, and the result will be
needed below.

Proposition II.5. Let un minimize IVn (M), where Vn is as in (1.12). Then, {un}n∈N is a minimizing sequence for IVTF (M).
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Proof. Let {un} be minimizers for IVn , n ∈ N. First, note that V1 ≥ Vn(x) ≥ VTF(x) for all x, and hence

E V1 (un) ≤ E Vn (un) = IVn ≤ ITF < 0

for all n. Applying Lemma II.3 with V = V1, the sequence {un}n∈N satisfies the bounds (2.6) uniformly in n ∈ N. Next, we observe that

∣x∣−ν
∈L

3
2
loc(R

3) for 0 < ν < 1, and thus

Zn∫R3

u2
n(x)
∣x∣ν

dx ≤ Zn∫
B1(0)

u2
n(x)
∣x∣ν

dx + Zn∫R3/B1(0)
u2

n(x) dx

≤ Zn∥un∥
2
L 6(R3) ∥∣x∣

−ν
∥

L
3
2 (B1(0))

+ ZnM

≤ cZn∥∇un∥
2
L 2(R3) + ZnM → 0.

In particular, E Vn (un) = E VTF (un) + o(1), and therefore we may conclude

IVTF ≤ lim inf
n→∞

E VTF (un) = lim inf
n→∞

E Vn (un) = lim inf
n→∞

IVn ≤ lim sup
n→∞

IVn ≤ IVTF .

□

Lemma II.6. Under all hypotheses of Theorem I.4, we have that, up to a subsequence, for all 0 < t <
√
−μ, there exists a constant C

independent of n with

0 < ∣un(x)∣ + ∣∇un(x)∣ ≤ Ce−tσn(x), a.e. inR3, (2.7)

where
σn(x) ∶= min

0≤i≤N
∣x − xi

n∣,

and xi
n are as in the Concentration Theorem I.1.

Proof. By Proposition II.1 (iii), we may take un(x) > 0 in R3. Alama et al.6 proved that

− Δun = (μn −
5
3

c1u
4
3
n +

4
3

c2u
2
3
n + Vn − u2

n ⋆ ∣ ⋅ ∣
−1
)un (2.8)

for some μn < 0. In addition to this, by the final step in the Proof of the Concentration Theorem I.1, the Lagrange multipliers μn → μ converge.
Fix t ∈ (0,

√
−μ), then for all n sufficiently large,

−Δun + t2un < [
1
2

(t2 + μ) +
4
3

c2u
2
3
n ]un.

Moreover, by Lemma II.3 and Eq. (2.8), we have that {un}n∈N is bounded in H 2(R3) and hence in L∞(R3). Therefore, we can make use of
Theorem 8.17 by Gilbarg and Trudinger11 to obtain

∣∣un∣∣L∞(B1(y)) ≤ C∣∣un∣∣L 2(B2(y)) ≤ C∣∣un∣∣L 2(R3/∪BR/2(xi
n)), y ∈ R3

/ ∪ BR(xi
n), R≫ 1,

where C is a constant independent of n, R, and y. By covering R3
/ ∪ BR(xi

n) with balls of radius one centered at points in the same set, we
obtain

∣∣un∣∣L∞(R3/∪BR(xi
n)) ≤ C∣∣un∣∣L 2(R3/∪BR/2(xi

n)).

On the other hand, by Proposition II.5, {un}n∈N is a minimizing sequence for IVTF (M), and hence the conclusions of Concentration
Theorem I.1 hold. In particular, this implies that given ϵ > 0, there exists R0 = R0(ϵ) ≥ 1such that

∣∣ui
∣∣

2
L 2(R3/BR/2(0)) <

ϵ
N + 1

, i = 0, . . . , N, R ≥ R0,

and (1.8), (1.11), Rellich–Kondrakov theorem, and the decay of all ui (2.2) ensure that, up to a subsequence,
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un(⋅ + xi
n)→ ui in L 2(BR/2(0)), i = 0, . . .N, R ≥ R0.

As a result,

lim
n→∞
∣∣un∣∣

2
L 2(R3/BR/2(xi

n)) =M − lim
n→∞
∣∣un∣∣

2
L 2(∪BR/2(xi

n))

=M − lim
n→∞

N

∑
i=0
∣∣un(x + xi

n)∣∣2L 2(BR/2(0))

=M −
N

∑
i=0
∣∣ui
∣∣

2
L 2(BR/2(0))

=
N

∑
i=0
∣∣ui
∣∣

2
L 2(R3/BR/2(0)) < ϵ.

Then, given any ϵ > 0, by choosing R0 = R0(ϵ) larger if necessary, we have

lim supn→∞∣∣un∣∣L∞(R3/∪BR(xi
n)) ≤ ϵ, R ≥ R0,

and hence for large enough n and R,
−Δun + t2un < 0, a.e. in R3

/ ∪ BR(xi
n).

Next, it is not hard to check that
−Δe−tσn + t2e−tσn > 0, a.e. in R3

/ ∪ BR(xi
n)

and that there exists C > 0 so that
un∣∂∪BR(xi

n) ≤ Ce−tR
= Ce−tσn(x)

∣∂∪BR(xi
n).

Thus,
−Δ[un(x) − Ce−tσn(x)

] + t2
[un(x) − Ce−tσn(x)

] < 0, a.e. in R3
/ ∪ BR(xi

n).

At this point, we would like to invoke the maximum principle to assert that un(x) is dominated by the supersolution v(x) = Ce−tσn in the
domain Ωn ∶= R3

/ ∪ BR(xi
n). As the domain is unbounded, this requires some care, but applying Stampacchia’s method as that of Benguria,

Brezis, and Lieb (Ref. 12, Lemma 8), we obtain the desired bound,

0 < un(x) ≤ v(x) = Ce−tσn(x), x ∈ Ωn.

The estimate on ∣∇un∣ then follows from standard elliptic estimates (see, for instance, Theorems 8.22 and 8.32 of Ref. 11). □

At this point, we would like to note that the functions ui decay to zero at infinity, even if m0
∉M ∗

VTF
. This follows from

Proposition II.1 (iii) and Theorem 8.17 uniformly by Gilbarg and Trudinger,11 again.

III. PROOF OF THEOREM I.2
The Proof of Theorems I.2 and I.4 rely both on the splitting structure given in the Concentration Theorem I.1 and on the idea that,

when calculating the interaction energy between very widely separated components ui(x + xi
n), only the mass mi and centers xi

n enter into the
computation at the first order. The following simple lemma makes this precise, at least for compactly supported components:

Lemma III.1.

(a) Let v1, v2
∈H 1(R3) with compact support, supp vi

⊂ Bρ(ζ i), i = 1, 2, with 1 < ρ < 1
4 R, R = ∣ζ1

− ζ2
∣ > 0. Then,

RRRRRRRRRRR
∫

Bρ(ζ1)
∫

Bρ(ζ2)

∣v1(x)∣2∣v2(y)∣2

∣x − y∣
dx dy −

∥v1
∥

2
L 2(R3)∥v

2
∥

2
L 2(R3)

∣ζ1 − ζ2∣

RRRRRRRRRRR

≤
4ρ
R2 ∥v

1
∥

2
L 2(R3)∥v

2
∥

2
L 2(R3).

(b) Let v ∈H 1(R3) with compact support, supp v ⊂ Bρ(ζ), with 1 < ρ < 1
4 R = ∣ζ∣. For any ν > 0 and fixed vector r ∈ R3 with 0 < ∣r∣ < 1

4 R,

RRRRRRRRRRR
∫

Bρ(ζ)

∣v(x)∣2

∣x − r∣ν
dx −

∥v∥2
L 2(R3)

∣ζ∣ν

RRRRRRRRRRR

≤ Cν
ρ

Rν+1 ∥v∥
2
L 2(R3).
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Proof. These follow from the pointwise estimates,

∣
1

∣ζ1 − ζ2∣
−

1
∣x − y∣

∣ ≤
2ρ

(R − ρ)2 ≤
4ρ
R2 ,

∣
1
∣ζ∣θ
−

1
∣x − r∣θ

∣ ≤
θρ

(∣ζ∣ − ρ − ∣r∣)θ+1 ≤ Cθ
ρ

R1+θ ,

for all x ∈ Bρ(ζ1), y ∈ Bρ(ζ2), and 1 < ρ < 1
4 R. □

Unlike the case of the Gamow liquid drop problem, our components ui are not of compact support, so we need to resort to truncation.
This will prove effective provided we are in a situation where the minimizers ui have exponential decay. To generate localization functions,
fix any smooth ϕ : R→ [0, 1] for which

ϕ𝟙(−∞,0] ≡ 1, ϕ𝟙[1,∞) ≡ 0, ∣∣ϕ′∣∣L∞(R) ≤ 2. (3.1)

We are now ready to prove Theorem I.2 and Proposition I.3 on the size of the compact part of minimizing sequences. The argument for the
first theorem is similar to Lions’ proof of existence of minimizers3 for TDFW with M ≤Z .

Proof of Theorem I.2. We write the potential V = VTF + W, where W(x) ≥ 0 and W satisfies (1.2). To obtain a contradiction, assume
{un}n∈N is a minimizing sequence for IV (M) for which there is splitting (i.e., N ≥ 1 in Theorem I.1), but 0 < m0

<Z . We let ui, mi
=

∥ui
∥

2
L 2(R3), i = 0, . . ., N be as given by Theorem I.1. Fix N distinct unit vectors ei

∈ R3, and for ρ > 1, define qi by

q0
= 0, q1

= ρ2e1, qi
= ρ3ei, i = 2, . . . , N.

Then, we define the truncated components,

U i
ρ(x) ∶= ϕ(∣x − qi

∣ − ρ + 1) ui(x − qi), i = 0, . . . , N.

That is, each U i has been truncated to have support in the ball Bρ(qi).
As m0

<Z , by Proposition II.2 (ii), μ < 0 for all Lagrange multipliers corresponding to ui, i = 0, . . ., N, and hence the exponential decay
estimate (2.2) holds for all of them. Let λ = 1

2
√
−μ for simplicity. Then,

mi
ρ ∶= ∥U

i
ρ∥

2
L 2(R3) ≤ ∫

Bρ(qi)
∣ui(x)∣2dx = mi

−O(e−λρ)

and

E V (U0
ρ ) = E V (u0) + O(e−λρ), E 0(U i

ρ) = E 0(ui) + O(e−λρ), i = 1, . . . , N.

Let wρ ∶= U0
ρ +∑N

i=1U i
ρ. As ∥wρ∥

2
L 2(R3) <M; by monotonicity of IV (M), we have

IV (M) ≤ IV (∥wρ∥
2
L 2(R3)) ≤ E V (wρ)

≤ E V (U0
ρ ) +

N

∑
i=1

E 0(U i
ρ) +

N

∑
i,j=0
i≠j

∫
Bρ(qi)
∫

Bρ(qj)

∣U i
ρ(x)∣2∣U j

ρ(y)∣2

∣x − y∣
dx dy

−
N

∑
i=1
∫

Bρ(qi)
[VTF(x) + W(x)]∣U i

ρ(x)∣2 dx + O(e−λρ)

= IV (m0) +
N

∑
i=1

I0(mi) +
N

∑
i,j=0
i≠j

∫
Bρ(qi)
∫

Bρ(qj)

∣U i
ρ(x)∣2∣U j

ρ(y)∣2

∣x − y∣
dx dy (3.2)

−
N

∑
i=1
∫

Bρ(qi)
[VTF(x) + W(x)]∣U i

ρ(x)∣2 dx + O(e−λρ).
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Next, we use Lemma III.1 to evaluate the interaction terms. Note that Ri,j
= ∣qi
− qj
∣ is of order ρ2 when i = 0, j = 1, and of order ρ3

otherwise, and 0 < mi
−mi

ρ < O(e−λρ). Thus, we have

∫
Bρ(qi)
∫

Bρ(qj)

∣U i
ρ(x)∣2∣U j

ρ(y)∣2

∣x − y∣
dx dy =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

m0m1

ρ2 + O(ρ−3), if i + j = 1

O(ρ−3), otherwise,

and for i = 1, . . ., N, k = 1, . . ., K, we evaluate the interaction with VTF by

∫
Bρ(qi)

∣U i
ρ(x)∣2

∣x − rk∣
dx =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

m1

ρ2 + O(ρ−3), if i = 1

O(ρ−3), if i ≥ 2.

Substituting into (3.2), and using W ≥ 0, we obtain the strict subadditivity of IV (M),

IV (M) − [IV (m0) +
N

∑
i=1

I0(mi)] ≤
m0m1

−Z m1

ρ2 + O(ρ−3) < 0,

for all ρ sufficiently large, since we are assuming m0
<Z . However, this contradicts (1.10) in the concentration theorem, and thus m0

≥Z ,
and the theorem is proven. □

Proof of Proposition I.3. In Proposition II.5, we have already shown that any sequence of minimizers un of IVn forms a minimizing
sequence for IVTF . Part (ii) then follows from Theorem I.2. □

IV. PROOF OF THEOREM I.4
The Proof of Theorem I.4 is more intricate than that of Theorem I.2, as it requires us to make a finer estimate of the smaller order terms

in the expansion of the energy.
By (i) of Proposition I.3, {un}n∈N is a minimizing sequence for IVTF (M), and hence the conclusions of Concentration Theorem I.1 hold.

We assume that there is splitting, that is N ≥ 1, and let ui, mi
= ∥ui

∥
2
L 2(R3), and xi

n (with x0
n = 0) be as in the concentration theorem. By

hypothesis, the common value of the Lagrange multipliers of the limit components ui is negative, μ < 0.
As in the Proof of Theorem I.2, we construct comparison functions by localization to balls with centers qi spreading to infinity. However,

we have little control on the errors introduced by the passage of un(⋅ − xi
n)⇀ ui, and thus we use truncations of the minimizers un themselves

to make these constructions.
Set

Rn ∶= min
0≤i<j
∣ xi

n − xj
n∣. (4.1)

Consider also a sequence ρn →∞ and translations {q0
n = 0}n∈N, . . . ,{qN

n }n∈N ⊂ R3 (all to be chosen later) with

1 ≤ ρn ≤
1
4

min{Rn, Qn}, where Qn ∶= min
i<j
∣ qi

n − q j
n∣. (4.2)

Using the same cutoff functions ϕ defined in (3.1), we then set

χρn (⋅) ∶= ϕ(∣ ⋅ ∣ − ρn + 1),

Gi
n(⋅) ∶= χρn (⋅ − xi

n)un(⋅), and Hi
n(⋅) ∶= Gi

n(⋅ + xi
n − qi

n).
(4.3)

Thus, Gi
n are compactly supported in balls Bρn (xi

n) centered at the xi
n, chosen by the concentration theorem, while Hi

n are the same functions
but translated to have centers at qi

n, which we will choose to create appropriate comparison functions. Set

mi
n ∶= ∣∣G

i
n∣∣

2
L 2(R3) = ∣∣H

i
n∣∣

2
L 2(R3).

We first confirm that these truncations provide a good approximation to the limit profiles ui in the L 2 sense.
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Lemma IV.1. For any ρn satisfying (4.2),

lim
n→∞

mi
n = mi

= ∥ui
∥

2
L 2(R3).

Proof. First, it is easy to show that Gi
n(⋅ + xi

n)⇀ ui, i = 0, . . ., N weakly in H 1(R3), and in the norm on L 2
loc(R

3). As a consequence,

mi
= ∥ui∥

2
L 2(R3) ≤ lim inf

n→∞
mi

n. (4.4)

To obtain the complementary bound, we note that∑N
i=0Gi

n(x) ≤ un(x) pointwise on R3, and since the supports of the Gi
n are disjoint, we have

lim sup
n→∞

N

∑
i=0

mi
n < ∥un∥

2
L 2(R3) =M =

N

∑
i=0

mi
≤

N

∑
i=0

lim inf
n→∞

mi
n ≤ lim inf

n→∞

N

∑
i=0

mi
n.

In particular, the limit M = limn→∞∑
N
i=0mi

n exists. Since individually the terms are bounded below via (4.4), we claim that each of the terms
mi

n → mi, i = 0, . . ., N. Indeed, for any ϵ > 0, there exists K > 0 for which∑N
i=0mi

n <M + ϵ and for any i, mi
n ≥ mi

− ϵ/N, whenever n ≥ K. Thus,
for each j, we have

m j
n +∑

i≠j
mi
− ϵ ≤

N

∑
i=0

mi
n <

N

∑
i=0

mi + ϵ,

and so m j
n < mj + 2ϵ, for all n ≥ K, that is, lim supn→∞mi

n ≤ mi, for each i, and the claim is proven. □

Since we are assuming μ < 0, the exponential decay of un away from balls Bρn (xi
n) allows us to localize the energy E Vn (un) with an

exponentially small error.

Lemma IV.2. Let ρn →∞ with ρn ≤
1
4 Rn. Then,

E Vn (un) ≥ E VTF(G
0
n) +

N

∑
i=1

E 0(Gi
n) − Zn∫R3

∣G0
n(x)∣2

∣x∣ν
dx

+ ∑
1≤i<j

mi
nm j

n

∣x i
n − x j

n∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣xi
n∣
− Zn

N

∑
i=1

mi
n

∣xi
n∣

ν − ϵ1,n,

where

∣ϵ1,n∣ ≤ C(
ρn

R2
n

+
Znρn

R1+ν
n

+ e−
√
−μ
2 ρn), (4.5)

as n→∞, with C depending on {mi
} and Z , but independent of {xi

n}.

Proof. By Lemma II.6, for sufficiently large n,

∣un(x) −
N

∑
i=0

Gi
n(x)∣ ≤ Ce−

√
−μ
2 σn(x), x ∈ Ωn ∶= R3

/
N
⋃
i=0

Bρn (xi
n),

where σn(x) is as in Lemma II.6. This together with (2.7), (2.8), μn → μ, Lemma II.3, ∣∣∇χn,ρn ∣∣L∞(R3) ≤ 2, and Hölder estimates for first
derivatives imply

∣∇(un(x) −
N

∑
i=0

Gi
n(x))∣ ≤ Ce−

√
−μ
2 σn(x).
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As Gi
n(x) = un(x) in Bρn (xi

n) and has support in Bρn+1(xi
n), the contribution to the energy is unchanged in⋃iBρn (xi

n) and is exponentially small

in the complementary region, Ωn. Moreover, the energy density is integrable over Ωn, and of order ϵ1,n = O(e−
√
−μ
2 ρn ). Hence, we calculate

E Vn (un) =
N

∑
i=0

E Vn(G
i
n) +∑

i<j
∫

Bρn (xi
n)
∫

Bρn (xj
n)

∣Gi
n(x)∣2∣Gj

n(y)∣2

∣x − y∣
dxdy + ϵ1,n

= E VTF(G
0
n) − Zn∫

Bρn (0)

∣G0
n(x)∣2

∣x∣ν
dx

+
N

∑
i=1
[E 0(Gi

n) − ∫R3
V(x)∣Gi

n(x)∣2dx − Zn∫
Bρn (xi

n)

∣Gi
n(x)∣2

∣x∣ν
dx]

+∑
i<j
∫

Bρn (xi
n)
∫

Bρn (xj
n)

∣Gi
n(x)∣2∣Gj

n(y)∣2

∣x − y∣
dxdy + ϵ1,n

= E VTF(G
0
n) +

N

∑
i=1

E 0(Gi
n) − Zn∫

Bρn (0)

∣G0
n(x)∣2

∣x∣ν
dx

+∑
i<j
∫

Bρn (xi
n)
∫

Bρn (xj
n)

∣Gi
n(x)∣2∣Gj

n(y)∣2

∣x − y∣
dxdy

−
N

∑
i=1

K

∑
k=1

αk∫R3

∣Gi
n(x)∣2

∣x − rk∣
dx − Zn

N

∑
i=1
∫

Bρn (xi
n)

∣Gi
n(x)∣2

∣x∣ν
dx + ϵ1,n.

(4.6)

Now, we apply Lemma III.1 to evaluate the interaction terms. In this way, we have

∫
Bρn (xi

n)
∫

Bρn (xj
n)

∣Gi
n(x)∣2∣Gj

n(y)∣2

∣x − y∣
dxdy ≥

mi
nmj

n

∣xi
n − xj

n∣
− 4mi

nmj
n

ρn

R2
n

,

∫R3

∣Gi
n(x)∣2

∣x − rk∣
dx ≤

mi
n

∣xi
n∣

+ C1mi
n

ρn

R2
n

,

∫
Bρn (xi

n)

∣Gi
n(x)∣2

∣x∣ν
dx ≤

mi
n

∣xi
n∣

ν + Cνmi
n

ρn

Rν+1
n

.

By substituting these estimates into (4.6), we arrive at the desired lower bound. □

Next, we create an upper bound estimate on the minimum energy by moving the localized components Hi
n (which are simply translates

of Gi
n) to study the role of the xi

n. That is, we consider a trial function wn = ∑
N
i=0Hi

n, which has the same localized components as un, but with
centers qi

n. The advantage of this over the upper bound constructed for the Proof of Theorem I.2 is that the terms of order O(1) will exactly
match those in the lower bound given by Lemma IV.2.

Lemma IV.3. Let {ρn}n∈N ⊂ (1,∞) and {q0
n = 0}n∈N, . . . ,{qN

n }n∈N ⊂ R3 satisfy (4.2). Then,

E Vn (un) < E VTF(G
0
n) +

N

∑
i=1

E 0(Gi
n) − Zn∫R3

∣G0
n(x)∣2

∣x∣ν
dx

+ ∑
1≤i<j≤N

m i
nm j

n

∣qi
n − q j

n∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣qi
n∣
− Zn

N

∑
i=1

mi
n

∣qi
n∣

ν + ϵ2,n,

where
∣ϵ2,n∣ ≤ C(

ρn

Q2
n

+
Znρn

Q1+ν
n

+ e−
√
−μ
2 ρn), (4.7)

as n→∞, with C depending on {mi
} and Z , but independent of {qi

n}.

Proof. Set

wn ∶=
N

∑
i=0

Hi
n.

As 0 ≤ wn(x) ≤ un(x) for all x ∈ R3, ∥wn∥
2
L 2(R3) < ∥un∥

2
L 2(R3). By the monotonicity of IVn (M) [Proposition II.1 (i)],
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E Vn (un) = IVn (M) < IVn(∣∣wn∣∣
2
L 2(R3)) ≤ E Vn (wn).

Using the support properties of Hi
n and recognizing E VTF (H0

n) = E VTF (G0
n), E 0(Hi

n) = E 0(Gi
n), we expand as in the Proof of Lemma IV.2 to

obtain the desired upper bound. □

By matching the lower bound from Lemma IV.2 with the upper bound from Lemma IV.3, we conclude for any choice of ρn, {qi
n}

satisfying (4.2), we have the following bound satisfied by the translations {xi
n},

∑
1≤i<j≤N

mi
nm j

n

∣xi
n − x j

n∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣xi
n∣
− Zn

N

∑
i=1

mi
n

∣xi
n∣

ν

≤ ∑
1≤i<j≤N

mi
nmj

n

∣qi
n − qj

n∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣qi
n∣
− Zn

N

∑
i=1

mi
n

∣qi
n∣

ν + ϵ1,n + ϵ2,n, (4.8)

where ϵ1,n, ϵ2,n are defined in the statements of Lemmas IV.2 and IV.3.
In what follows, we exploit the freedom we have of choosing vectors qi

n and radii ρn to prove Theorem I.4. First, we must find the correct
scale for the diverging centers {xi

n}. We define
R0

n ∶= min
1≤i≤N
∣xi

n∣,

and for N ≥ 2,
Rn ∶= min

1≤i<j≤N
∣xi

n − x j
n∣.

By Concentration Theorem I.1, each diverges to infinity, and moreover Rn = min{Rn, R0
n} [see (4.1)]. By passing to a subsequence and

reordering the components if necessary, we may assume that the first diverging center is the closest,

∣x1
n∣ = R0

n, ∀n ∈ N.

Lemma IV.4.

(a) If m0
>Z , then

lim inf
n→∞

RnZ
1

1−ν
n > 0. (4.9)

(b) If N ≥ 2 and lim sup
n→∞

R0
n

Rn
> 0, then there exists a subsequence for which (4.9) holds.

(c) If N ≥ 2 and R0
n

Rn
→ 0, then

lim inf
n→∞

RnZ
1

1−ν
n > 0.

Proof. First assume m0
>Z . To derive a contradiction, assume that (along some subsequence) RnZ

1
1−ν

n → 0. Choose qi
n = Rnpi, for dis-

tinct fixed vectors pi, i = 1, . . ., N, and p0
= 0. We also denote by yi

n = R−1
n xi

n. By the definition of Rn, we have ∣yi
n∣ ≥ 1 for all i = 1, . . ., N, and

∣yi
n − yj

n∣ ≥ 1 for all 0 ≤ i < j ≤ N. Extracting a further subsequence if necessary, we may assume that either

∣y1
n∣ = 1 or there exists i0, j0 ≠ 0 for which ∣yi0

n − yj0
n ∣ = 1,∀n ∈ N. (4.10)

Set ρn =
√

Rn, and so (4.2) is satisfied for these choices, and in fact Rnϵ1,n, Rnϵ2,n → 0, where ϵ1,n, ϵ2,n are the remainder terms defined in
Lemmas IV.2 and IV.3.

We multiply (4.8) by Rn to obtain

∑
1≤i<j≤N

mi
nm j

n

∣yi
n − y j

n∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣yi
n∣

≤ ∑
1≤i<j≤N

mi
nm j

n

∣pi − pj∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣pi∣

− ZnR1−ν
n

N

∑
i=1

mi
n

∣pi∣ν
+ ZnR1−ν

n

N

∑
i=1

mi
n

∣yi
n∣

ν + Rnϵ1,n + Rnϵ2,n

≤ ∑
1≤i<j≤N

mi
nm j

n

∣pi − p j∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣pi∣
+ o(1),

(4.11)
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as ZnR1−ν
n → 0 by the contradiction hypothesis. Assuming that ∣yi0

n − y j0
n ∣ = 1 is chosen in (4.10), we then obtain

mi0
n mj0

n ≤ ∑
1≤i<j≤N

mi
nmj

n

∣pi − pj∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣pi∣
+ o(1),

which holds for all n and any choice of vectors pi. Since mi
n → mi

> 0, we obtain a contradiction by choosing ∣pi
− pj
∣ (with 0 ≤ i < j ≤ N)

sufficiently large. If the choice in (4.10) yields ∣y1
n∣ = 1, we instead have

(m0
n −Z ) m1

n ≤ ∑
1≤i<j

mi
nmj

n

∣pi − pj∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣pi∣
+ o(1).

As we are assuming m0
= limn→∞m0

n >Z , we arrive at the same contradiction as above, choosing ∣pi
− pj
∣ (with 1 ≤ i < j ≤ N) sufficiently

large. This completes the proof of (a).

For (b), we assume N ≥ 2 and there exists a subsequence and r > 0 for which R0
n ≥ rRn, but RnZ

1
1−ν

n → 0. Recall that Rn = min{R0
n, Rn},

and so
min{r, 1}Rn ≤ Rn ≤ Rn,

and so each of R0
n, Rn, Rn is of the same order of magnitude. As in part (a), let yi

n = R−1
n xi

n, qi
n = Rnpi, and choose i0, j0 for which ∣xi0 − xj0 ∣ = Rn.

Note that

∣yi0
n − yj0

n ∣
−1
=

Rn

Rn
≥ min{1, r}.

Again, multiply (4.8) by Rn, and pass to the limit as in (4.11) to obtain

min{1, r}mi0
n mj0

n + (m0
n −Z )

N

∑
i=1

mi
n

∣yi
n∣
≤ ∑

0<i<j

mi
nmj

n

∣pi − pj∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣pi∣
+ o(1),

for all n and any choice of vectors pi. Since mi
n → mi

> 0 and m0
≥Z by Theorem I.2, we obtain a contradiction by choosing vectors pi with

∣pi
− p j
∣ sufficiently large.

To prove (c), assume R0
n

Rn
→ 0, and suppose (for a contradiction) that RnZ

1
1−ν

n → 0. First, we note that

∣xi
n∣ = ∣x

i
n − x1

n + x1
n∣ ≥ ∣x

i
n − x1

n∣ − ∣x
1
n∣ ≥ Rn − R0

n ≥
1
2

Rn ≫ ∣x1
n∣, i ≥ 2, n≫ 1,

and so only one of the centers is much closer to the origin than the others, ∣x1
n∣≪ Rn ≤ ∣xi

n∣, for all i = 2, . . ., N.
Choose cutoff radii ρn in Lemmas IV.2 and IV.3 with R0

n ≪ ρn ≪ Rn, for instance, ρn =
√

R0
nRn. Note that the ball Bρn (0) now includes

both x0
n = 0 and x1

n. In particular, when defining the disjoint components Gi
n, Hi

n with Rn and ρn, we no longer have a component with i = 1,
but the i = 0 piece accounts for the mass concentrating both at the origin and at x1

n. In particular, we will have

∥G0
n∥

2
L2(R3) = ∥H

0
n∥

2
L 2(R3) = m0 + m1 + o(1) >Z . (4.12)

In this way, we return to the same situation as in part (a), but where Rn replaces Rn as the decisive length scale. As in (a), we choose distinct
vectors q0

= 0 and qi, i = 2, . . ., N, and set pi
n ∶= Rnqi, and (as before) yi

n = xi
n/Rn. Modulo a subsequence, either there is a pair with ∣yi0

n − yj0
n ∣ = 1,

(i0, j0 ≥ 2) or i0 ≥ 2 with ∣yi0
n ∣ = 1, ∀n. Then, we multiply (4.8) by Rn, to obtain

∑
2≤i<j

mi
nmj

n

∣yi
n − yj

n∣
+ (m0 + m1

−Z + o(1))
N

∑
i=2

mi
n

∣yi
n∣
− ZnR1−ν

n

N

∑
i=2

mi
n

∣yi
n∣

ν

≤ ∑
2≤i<j

mi
nmj

n

∣pi − pj∣
+ (m0 + m1

−Z + o(1))
N

∑
i=2

mi
n

∣pi∣
− ZnR1−ν

n

N

∑
i=2

mi
n

∣pi∣ν
+ Rnϵ1,n + Rnϵ2,n,

where ϵ1,n and ϵ2,n satisfy (4.5) and (4.7) for Rn, ρn replacing Rn, ρn. In particular, Rnϵ1,n, Rnϵ2,n → 0. Employing the contradiction hypothesis

RnZ
1

1−ν
n → 0 and the choice of Rn, ρn, we deduce that (in the case ∣yi0

n − yj0
n ∣ = 1)
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mi0
n mj0

n ≤ ∑
2≤i<j

mi
nm j

n

∣pi − p j∣
+ (m0 + m1

−Z + o(1))
N

∑
i=2

mi
n

∣pi∣
+ o(1)

or (in the case ∣yi0
n ∣ = 1)

(m0 + m1
−Z )mi0 ≤ ∑

2≤i<j

mi
nm j

n

∣pi − p j∣
+ (m0 + m1

−Z + o(1))
N

∑
i=2

mi
n

∣pi∣
+ o(1).

In either case, we then arrive at the same contradiction as in (a), by choosing ∣pi
− pj
∣ large enough, i ≠ j. □

We now prove the main theorem on the convergence of concentration points at the scale Rn = O(Z
−

1
1−ν

n ).

Proof of Theorem I.4. Let un attain the minimum in IVn for each n→∞. Applying the Concentration Theorem I.1, we obtain values of
N, masses m0, . . ., mN , and translations {xi

n}.
For part (i), we assume m0

∈M ∗

VTF
and m0

>Z . For any choice of N and masses m0, . . ., mN with m0
>Z , all minimizing sequences

for FN,(m0 ,...,mN )(w
1, . . . ,wN ) on ΣN are convergent. This follows by exactly the same argument as in the Proof of Proposition 8 of Alama

et al.9 Let (a1, . . ., aN ) ∈ ΣN be such a minimizer,

FN,(m0 ,...,mN )(a1, . . . , aN ) = min
(w1 ,...,wN )∈ΣN

FN,(m0 ,...,mN )(w
1, . . . ,wN ) < 0.

Define ξi
n ∶= Z

1
1−ν

n xi
n. By Lemma IV.4, ∣ξi

n∣, ∣ξi
n − ξj

n∣ ≥ c > 0 are bounded below for each i = 1, . . ., N and j ≠ i.
Set

ρn ∶= Z
−

1
2(1−ν)

n and qi
n ∶= Z

−
1

1−ν
n ai.

Then, by the Lemma IV.4, up to a subsequence,

1 ≤ ρn ≤
1
4

min
i<j
{∣qi

n − qj
n∣, Rn},

so that Eq. (4.8) holds, and

∑
1≤i<j

mi
nm j

n

∣ξi
n − ξ j

n∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣ξi
n∣
−

N

∑
i=1

mi
n

∣ξi
n∣

ν

≤ ∑
1≤i<j

mi
nm j

n

∣ai − aj∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣ai∣
−

N

∑
i=1

mi
n

∣ai∣ν
+ Z

−
1

1−ν
n (ϵn + ϵ̂n), (4.13)

where ϵn and ϵ̂n satisfy (4.5) and (4.7), respectively. In particular, Z
−

1
1−ν

n ϵn, Z
−

1
1−ν

n ϵ̂n → 0.
In addition to this, by Lemma IV.4,

lim inf
n→∞

∣ξi
n − ξj

n∣ ≥ lim inf
n→∞

Z
1

1−ν
n Rn > 0. (4.14)

By Lemma IV.1, limn→∞mi
n = mi and hence applying (4.13) and (4.14), we obtain

lim sup
n→∞

FN,(m0 ,...,mN )(ξ1
n, . . . , ξN

n )

= lim sup
n→∞

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤i<j≤N

mi
nmj

n

∣ξi
n − ξj

n∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣ξi
n∣
−

N

∑
i=1

mi
n

∣ξi
n∣

ν

⎤
⎥
⎥
⎥
⎥
⎦

≤ lim sup
n→∞

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤i<j≤N

mi
nmj

n

∣ai − a j∣
+ (m0

n −Z )
N

∑
i=1

mi
n

∣ai∣
−

N

∑
i=1

mi
n

∣ai∣ν

⎤
⎥
⎥
⎥
⎥
⎦

= FN,(m0 ,...,mN )(a1, . . . , aN )

= min
(w1 ,...,wN )∈ΣN

FN,(m0 ,...,mN )(w
1, . . . ,wN ). (4.15)
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Therefore, {(ξ1
n, . . . , ξN

n )}n∈N is a minimizing sequence for FN,(m0 ,...,mN ) in ΣN , and by Ref. 9, Proposition 8, ξi
n = xi

nZ
1

1−ν → yi, i = 0, . . ., N, with
(y1, . . ., yN ) a minimizing configuration for FN,(m0 ,...,mN ). This completes the proof in case m0

>Z .

Now consider (ii), for which m0
=Z . We first show that ∣x1

n∣≪ Z
1

ν−1
n . Indeed, assume the contrary that, up to a subsequence,

∣x1
n∣Z

1
1−ν

n ≥ c > 0 for all n. In case N ≥ 2, by part (b) of Lemma IV.4, then RnZ
1

ν−1
n ≥ c′ > 0. As in the proof of (i), define ξi

n ∶= xi
nZ

1
1−ν

n , then

∣ξi
n∣ ≥ c, i = 1, . . ., N, is bounded below. We also fix any distinct points p1, . . . , pN

∈ R3
/{0} and qi

n = piZ
1

ν−1
n .

We now proceed as above, arriving at (4.13). Note that the inequality (4.13) holds for any N ≥ 1. In fact, if N = 1, the inequality simplifies
significantly: the double sums are not present, and only the i = 1 terms remain. Passing to the limit as in (4.15) and recalling m0

n →Z , we
then have

lim sup
n→∞

FN,(Z ,m1 ,...,mN )(ξ1
n, . . . , ξN

n ) ≤ FN,(Z ,m1 ,...,mN )(p1, . . . , pN ),

for any choice of distinct nonzero vectors p1, . . ., pN in R3. Now, as the ξi
n are bounded below, the left hand side of the above inequality is

finite. However, the function FN,(Z ,m1 ,...,mN ) is unbounded below, and thus we may choose p1, . . ., pN so as to contradict the inequality. We

conclude that ∣x1
n∣≪ Z

1
ν−1

n .
Finally, for m0

=Z and N ≥ 2, we prove the asymptotic distribution of the concentration centers. For this, we return to the definitions

of Rn, ρn in the Proof of Lemma IV.4 (c), in which we proved that Rn ≥ cZ
1

ν−1
n . We recall that the components G0

n, H0
n defined in (4.3) (but

using ρn in the cutoff χρn ) will enclose neighborhoods of both x0
n = 0 and x1

n, and hence their masses combine in G0
n, H0

n, as in (4.12). By
the same arguments as in Ref. 6, Proposition 8, all minimizing sequences of the interaction energy FN,(m1 ,m2 ,...,mN ) converge to a minimizer

(y2, . . . , yN ) ∈ ΣN . Define q0
n = 0 and qi

n = yiZ
1

ν−1
n , i = 2, . . ., N. Applying (4.8) with these choices, we have

∑
2≤i<j

mi
nm j

n

∣xi
n − x j

n∣
+ (m0 + m1

−Z + o(1))
N

∑
i=2

mi
n

∣xi
n∣
− Zn

N

∑
i=2

mi
n

∣xi
n∣

ν

≤ ∑
2≤i<j

mi
nm j

n

∣qi
n − qj

n∣
+ (m0 + m1

−Z + o(1))
N

∑
i=2

mi
n

∣qi
n∣
− Zn

N

∑
i=2

mi
n

∣qi
n∣

ν + ϵ1,n + ϵ2,n,

with [as in part (i)] Z
1

ν−1
n ϵ1,n, Z

1
ν−1

n ϵ2,n → 0. Multiplying the above inequality by Z
1

ν−1
n , we pass to the limit and obtain an inequality for

FN,(m1 ,m2 ,...,mN ),

lim sup
n→∞

FN,(m1 ,m2 ,...,mN )(ξ2
n, . . . , ξN

n ) ≤ FN,(m1 ,m2 ,...,mN )(y2, . . . , yN ).

Again, the renormalized centers (ξ2
n, . . . , ξN

n ) give a minimizing sequence for FN,(m1 ,m2 ,...,mN ) and must converge to a minimizer. This completes
the Proof of Theorem I.4. □
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APPENDIX A: PROOF OF THE CONCENTRATION THEOREM

In this section, we prove the Concentration Theorem I.1. The use of concentration–compactness techniques in Thomas–Fermi-type
problems goes back at least to Lions,3 for whom these problems were an important motivation for the development of the general theory. The
result of the Concentration Theorem I.1 is essentially contained in the work of Lions,3 although not as a single theorem and with many details
left to the reader. Since we make extensive use of this Theorem in proving the main results of this paper, main results of this paper, we provide
a more complete proof here (with specific references to steps appearing in other articles).

Proof of Theorem I.1. We first present the proof with V ≢ 0; the case V ≡ 0 requires only a simple modification. Let {un}n∈N be a
minimizing sequence for E V with ∥un∥

2
L 2(R3) =M. Since E V is coercive, {un}n∈N is bounded in H 1(R3). Hence, there exists u0

∈H 1(R3) and
a subsequence for which un ⇀ u0 weakly in H 1(R3). At this point, it is not clear if u0 is nontrivial; this will be shown later. Let m0

∶= ∥u0
∥

2
L 2(R3)

and x0
n = 0. If m0

=M, then the sequence converges strongly in L 2, and u0 minimizes IV (M), and the procedure terminates with N = 0.
If instead m0

<M, we define the remainder u0
n(x) ∶= un(x) − u0(x + x0

n). Note that by weak convergence, ∥u0
n∥

2
L 2(R3) →M −m0 and by

weak convergence and the Brezis–Lieb Lemma, the energy decouples in the limit (see Refs. 2 and 5),
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lim
n→∞
[E V (un) − E V (u0) − E 0(u0

n)] = 0,

and thus
IV (M) = lim

n→∞
E V (un) = E V (u0) + lim

n→∞
E 0(u0

n) ≥ IV (m0) + I0(M −m0).

By the binding inequality (2.1), we have

IV (m0) + I0(M −m0) ≥ IV (M) ≥ E V (u0) + lim
n→∞

E 0(u0
n) ≥ IV (m0) + I0(M −m0), (A1)

and hence we obtain equality of each expression,

E V (u0) = IV (m0) and lim
n→∞

E 0(u0
n) = I0(M −m0),

that is, the remainder sequence {u0
n}n∈N is a minimizing sequence for I0(M −m0).

We next consider the residual sequence {u0
n}n∈N and show it concentrates after translation. First, we must eliminate the possibility of

“vanishing” in the concentration–compactness framework.8 To this end, for any bounded sequence, we define (as in Nam–van den Bosch5)

ω({vn}) ∶= sup{∥v∥2
∣∃yn ∈ R3 and a subsequence such that vn(⋅ − yn)⇀ v in H 1(R3)}.

We claim that ω({u0
n}) > 0. Indeed, applying Ref. 8, Lemma I.1, if ω({u0

n}) = 0, then u0
n → 0 in L q(R3) norm, ∀2 < q < 6, so, in particular,

∫R3 (u0
n)

8
3 → 0. In addition, by (1.2), we have ∫R3 V ∣u0

n∣
2
→ 0, and hence IV (M) = limn→∞E V (u0

n) ≥ 0, which contradicts Proposition II.1.
Hence “vanishing” cannot occur.

We can, therefore, choose a sequence x1
n ∈ R3 for which u0

n(⋅ − x1
n)⇀ u1, for some u1

∈H 1(R3), with mass m1
∶= ∥u1

∥
2
L 2(R3) ≥

1
2 ω({u0

n})
> 0. As u0

n ⇀ 0, we must have ∣x1
n∣→∞. In case m0

=M −m1, the sequence converges strongly in L 2, and u1 minimizes IV (M −m1), and we
obtain (1.8)–(1.11), with N = 1.

If m1
<M −m0, we again define the remainder sequence, u1

n(x) ∶= u0
n(x) − u1(x + x1

n). By definition, u1
n ⇀ 0, u1(⋅ − x1

n)⇀ 0, and
∥u1

n∥
2
L 2(R3) →M −m0

−m1, and the energy splits

E 0(u0
n) = E 0(u1) + E 0(u1

n) + o(1).

By the same argument as in (A1), this implies that E 0(u1) = I0(m1), I0(M −m0) = I0(m1) + I0(M −m0
−m1), and {u1

n}n∈N is a minimizing
sequence for I0(M −m0

−m1). Substituting for I0(M −m0) in (A1), we conclude

IV (M) = IV (m0) + I0(m1) + I0(M −m0
−m1).

We iterate the above process: for each k = 2, 3, . . . , we obtain translations {xk
n} in R3, ∣xk

n∣→∞, functions uk
∈H 1(R3) with

∥uk
∥

2
L 2(R3) ∶= mk

≥
1
2

ω({uk−1
n }), (A2)

and remainder sequences

uk
n(x) ∶= uk−1

n (x) − uk(x + xk
n) = un(x) − u0(x) −

k

∑
i=1

ui(x + xi
n),

satisfying

∥uk
n∥

2

L 2(R3)
=M − (m0 +

k

∑
i=1

mi
) + o(1),

uk
n(⋅ − xk

n)⇀ 0, weakly in H 1(R3),

IV (M) = IV (m0) +
k

∑
i=1

I0(mk), and hence

E 0(uk) = IV (mk).

Next, we show that ∣xk
n − xi

n∣→∞ for all i ≠ k. Suppose not, and take the smallest k > i for which ∣xk
− xi
∣ remains bounded along some

subsequence (so ∣xi
n − x j

n∣→∞ for all i < j < k). Taking a further subsequence, (xk
− xi)→ ξ for some ξ ∈ R3. Now, note that ui

n(x) = uk
n(x)

+∑k
j=i+1u j(x + x j

n) and hence

ui
n(x − xi

n) = uk
n(x − xi

n) + uk(x − xi
n + xi

n) +
k

∑
j=i+1

u j(x − xi
n + x j

n). (A3)
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Since ∣x j
n − xi

n∣→∞ for i < j < k, u j(⋅ − xi
n + x j

n)⇀ 0, while uk(⋅ − xi
n + xk

n)→ uk(⋅ + ξ). uk
n(⋅ − xi

n)⇀ 0, and hence we pass to the limit in (A3) to
obtain ui

n(⋅ − xi
n)⇀ uk(⋅ + ξ) ≠ 0, a contradiction. Hence, (1.11) is verified.

We claim that this process must terminate at some finite step k = N, for which M = m0 +∑N
i=1mi. Indeed, if mi

> 0 for all i ∈ N, since
M ≥ ∑k

i=0mi for all k, we have limk→∞mk
= 0. By (A2), we conclude that limj→∞ω({uj

n}) = 0, i.e., the remaining mass after k steps,
(M −∑k

i=0mi) may be made arbitrarily small. However, by the concavity of I0(M) for small [see Appendix or Ref. 5, Lemma 9 (iii)] there
exists Mc > 0 such that minimizing sequences for I0 do not split for M <Mc. This proves statements (1.8)–(1.10).

For V ≢ 0, we now show that m0
> 0, and hence the translations x0

n = 0 are trivial in this case. Indeed, if m0
= 0, consider the sequence

ũn = un(x − x1
n). As E 0 is translation invariant, and E V (u1) < E 0(u1), a simple calculation shows limn→∞E V (ũn) < IV , which is not possible.

For V ≡ 0, the functional E 0 is translation invariant. Hence, we may begin the process at the Step k = 1, defining ω({un}) and identifying
a first set of translates {x0

n} as above. By translation invariance, ũn = un(⋅ − x1
n) is also a minimizing sequence for I0(M), and the weak limit

u0
= w − limn→∞ũn will be nontrivial. The rest of the proof continues as in the case of nontrivial V .

It remains to show that each ui solves the Euler–Lagrange equation with the same Lagrange multiplier μ. By the Ekeland variational
principle13 (see also Ref. 14, Corollary 5.3), we may find a minimizing sequence {vn}n∈N, with ∥vn∥

2
L 2(R3) =M and ∥ vn − un ∥→ 0, for which

the Euler–Lagrange equation is solved up to an small error in H −1(R3). That is, ∃μn ∈ R with

DE V (vn) − μnvn → 0 in H −1 norm.

The Lagrange multipliers may be expressed as

μnM = ⟨DE V (vn), vn⟩ + o(1)∥vn∥H 1(R3) = ⟨DE V (vn), vn⟩ + o(1),

as minimizing sequences are bounded. By Lemma II.3, ∣μn∣ is uniformly bounded, and hence (after extracting a sequence), we may assume
μn → μ for some μ ∈ R. As un(⋅ − xi

n)⇀ ui weakly in H 1(R3), the same is true for ṽn ∶= vn(⋅ − xi
n)⇀ ui, i = 0, . . ., N. Hence, for every

φ ∈ C∞0 (R3),

⟨DE V (u0) − μu0, φ⟩ = lim
n→∞
⟨DE V (ṽn) − μnṽn, φ⟩ = 0,

and similarly, DE 0(ui) − μui
= 0, i = 1, . . ., N. □

APPENDIX B: CONCAVITY FOR SMALL MASS

We show that I0(M) is concave for small values of M. This is another property which the TFDW-type functionals share with Gamow’s
liquid drop model.

Proposition B.1. I0(M) is strictly concave for M sufficiently small.

Proof. Nam and Van Den Bosch5 showed I0(M) is attained for M small enough by exploiting

I0(M) = inf{Fu(M); u ∈H 1(R3), ∣∣u∣∣L 2(R3) = 1}, M > 0,

where

Fu(M) ∶= −
M

5
3 (Cu −M

2
3 Du)

2

+

4(Au + M
2
3 Bu)

,

with

Au ∶= ∫R3
∣∇u(x)∣2dx, Bu ∶= c1∫R3

∣u(x)∣
10
3 dx,

Cu ∶= c2∫R3
∣u(x)∣

8
3 dx, Du ∶=

1
2∫R3

∫R3

u2(x)u2(y)
∣x − y∣

dxdy.

Indeed, they proved M ≪ 1↦ I0(M) is strictly subadditive by showing that M ≪ 1↦ Fu(M)/M is strictly increasing, uniformly in u. The
latter was established by making use of the inequalities

Bu ≤ CM
2
3 Au, Du ≤ CM

2
3 Cu, u ∈H 1(R3). (B1)

(B1) follow from Hölder’s inequality, Sobolev’s inequality, Hardy–Littlewood’s inequality, and the interpolation inequality in Lebesgue spaces.
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Then, let us fix any α ∈ (0, 1), and M1, M2 ≪ 1. By (B1),

d2F
dM2 =

d2

dM2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
M

5
3 (Cu −M

2
3 Du)

2

4(Au + M
2
3 Bu)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −
2Gu(M)

9M
1
3 (Au + M

2
3 Bu)3

, M ≪ 1,

where

Gu(M) ∶= 14M
8
3 B2

uD2
u + M2(37AuBuD2

u − 10B2
uCuDu) + M

4
3 (27A2

uD2
u − 30AuBuCuDu)

+ M
2
3 (−28A2

uCuDu + AuBuC2
u) + 5A2

uC2
u

> A2
uC2

u(−10M2
− 30M

4
3 − 28M

2
3 + 5) > 0,

uniformly in u. Therefore, Fu(M) is strictly concave for M ≪ 1 uniformly in u. As a consequence, for some u∗ = u∗α,M1 ,M2 ,

I0(αM1 + (1 − α)M2) = Fu∗ (αM1 + (1 − α)M2)
> αFu∗ (M1) + (1 − α)Fu∗ (M2)
≥ αI0(M1) + (1 − α)I0(M2).

Since α, M1, and M2 were arbitrary, we conclude that I0 is strictly concave for M ≪ 1. □
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